
Journal of Pure and Applied Algebra 29 (1983) 219-239 
North-Holland 

219 

SPECTRAL CATEGORIES AND VARIETIES OF 
PREADDITIVE CATEGORIES 

Albert0 FACCHINI* 
Istituto di Matematica, Informatica e Sistemistica, Universitd di Udine, Italy 
Department of Pure Mathematics, University of Sheffield, Great Britain 

Communicated by H. Bass 
Received 9 July 1982 

In this paper we reinterpret the main results about the spectral categoric; by 
making use of the theory of sheaves and introducing the notion of ‘variety of 
preadditive categories’. This approach allows us to visualize the structure of the 
spectral categories better, to explain the different decompositions of a spectral 
category (discrete and continuous part [4], type I, II and III [14]) and to give an 
incisive interpretation to the dimension theory for the objects of a spectral category 
[7]. Moreover, we give an explicit description of the Grothendieck groups df the 
dense subcategories of a spectral category. 

Spectral categories, that is abelian categories with exact direct limits in which 
every exact sequence splits, naturally arise in the study of injective modules (or, 
more generally, in the study of the injective objects of any Grothendieck category) 
and their Krull-Remak-Schmidt-Gabriel decompositions [ 121. They were intro- 
duced by Gabriel and Oberst [4], who discovered that any spectral category is the 
product of a discrete spectral category and a continuous one. Later, on the lines of 
Kaplansky’s theory of types for A W*-algebras [8], Roos [ 141 discovered that every 
spectral category can be decomposed into a product of categories of three distinct 
types (type I, II and III). Finally Goodearl and Boyle [7] constructed a complete and 
beautiful dimension theory for the objects of a spectral category. The directly finite 
case of that theory is partially based on ideas of Von Neumann and Loomis. 

We study the spectral categories by means of the varieties of preadditive 
categories (their definition is given in Section 1). Essentially a variety of preadditive 
categories is for a preadditive category [ 121 what a ringed space is for a ring. Ringed 
spaces have been extensively used by Dauns and Hofmann [l] and Pierce [ 1 l] in the 
study of Von Neumann (bi)regular rings. Here we study the spectral categories by 
means of varieties of categories. Given any abelian category %, we construct an 
associated variety of preadditive categories having the spectrum W[ ‘c’] of the Boolean 
algebra of all idempotents of the center of (z’ as a basis and suitable quotient 
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J/.&, ME X[v; 1, of %;‘ as stalks (Sections 3 and 4). Here ‘quotient 
category’ means ‘quotient category in the sense of Gabriel’ [3]. 

Vice versa, given any variety of preadditive categories, we may construct its 
category of global sections. If we limit our attention to the spectral categories, we 
obtain a one-to-one correspondence (up to isomorphism) between spectr;dl 
categories and reduced spectral varieties of categories (Section 6). Here ‘reduced’ 
means a ‘variety having a Boolean space as a basis and indecomposable categories 
as stalks’. We can thus begin our study of the variety associated to a spectral 
category (Section 7). The stalk %/.dM of this variety has a very simple structure and 
it is possible to completely determine the class YM of all the isomorphism classes of 
the objects of the stalk C&. The class CflM turns out to be totally ordered (in the 
order induced by the relation ‘to be isomorphic to a subobject of’) and it is par- 
titioned into a directly finite part and a purely infinite part. The directly finite part 
of f5, is the positive cone of a totally ordered abelian group, and Goodearl and 
Boyle’s finite dimensions d,,, (7) are the real valuations of this group. Their infinite 
dimensions pM also are defined on the stalks %‘/.$, of the associated variety. 

We then turn to the study of the Grothendieck groups of the dense subcategories 
(0, Serre subcategories) of a spectral category Y; (Section 8). These groups turn out 
to be groups of global sections of sheaves which have X[U.‘] as a basis and totally 
ordered abelian groups as stalks. These totally ordered abelian groups are convex 
subgroups of the ordered group whose positive cone is the directly finite part of 

)‘\I- 
Finally, in the last section we study some examples by means of the associated 

variety of categories. In particular we reinterpret Gabriel and Oberst’s decomposi- 
tion into discrete and continuous part (41 and ROOS’S decomposition into types 

WI9 VI. 

1. Notation and definitions 

We want to define a ‘sheaf of preadditive categories’ or, to be more precise, the 
analogue for a preadditive category of what a ringed space is for a r.‘.lg. The defini- 
tion vve give in this section avoids all set-theoretic problems. 

A varieta? of preadditive categories (X, Y ) consists of: 
(a) a topological space X, called the basis of (X, Y ); 

(b) a cla:3s Ob( y ), whose elements are called objects of (X, Y ); 

(c) a sheaf of abelian groups .xom, (A, B) over X for each ordered pair (A, B) 
of objects rf (X, Y ); 

(d) for each XE X a preadditive category Y _y, called the stalk of (X, % ) at x, such 
that Ob( 1, ;\ = Ob( I ) and Horn 1 ,(A, B) = .~bm 1 (A, B), for all XE X, A, B E Ob( Y ). 

Before stating the axioms a variety of preadditive categories must satisfy, let us 
recall that there are two formally different (but equivalent) definitions of a sheaf 
of abclian groups. The one we shall make use of is due essentially to Leray: a sheaf 



Spectral categories and varieties of preadditive categories 221 

9 of abelian groups over X consists of a topological space Y and a local homeomor- 
phism R : Y+X such that 1c-‘(x) = 9” is an abelian group for alI XE .Y and the 
mappings induced by the operations are continuous (see [IS]). 

The composition functions on the stalks V’ of a variety of preadditive categories 
(X, W) are subject to two axioms: 

(i) for each triple (A, B, C) of objects of (X, I ), let Zom I (A, B) + #‘cm F (B, C) 
denote the disjoint union UxEx(xonr I( (A, B), x Xom F (B, C)x) considered as a 
topological subspace of “Yom y (A, B) x Zom I (B, C) endowed with the product 
topology; then the mapping Yoan I (A, B) + .Fom I (B, C)+%mz I (A, Cl induced by 
the composition functions on the stalks, (fx,gx)+g~ofx, is continuous; 

(ii) for each A ~0b( r ), the mapping X-,Zom s (A, A), x+ lA E Horn ,,(A, A) 
is continuous, i.e. it is a global section of the sheaf of abelian groups *Worn r (A, A). 

An example of a variety of preadditive categories is given by the variety (X, Y ) 
over X with constant stalk %‘. Here X is a topological space and % is a preadditive 
category [ 121; set Ob( Y ) = Ob(%), gx= %’ for all x E X and let 8orn I (A, B) be the 
constant sheaf of abelian groups over X with stalk Horn, (A, B) for all 
A, &Ob( y ). 

If (X, Y ) is a variety of preadditive categories and A, B are objects of (X, I ), a 
morphism o of A into B, denoted by 0 : A -+ B, is a global section 
a E r(X, *worn I (A, B)). A morphism o : A +B in a variety (X, tf ) is an Ipomor- 
phism if there exists r : B -+ A such that T 0 o = lA and a 0 7 = ls (here the composi- 
tion 0 is componentwise). A and R are then isomorphic objects in (X, Y ). 

Recall that a Boolean space is a totally disconnected compact Hausdorff space 
and a complete Boolean space is an extremally disconnected compact Hausdorff 
space (i.e. the closure of any open set is open.) In the sequel we shall generally con- 
sider varieties of preadditive categories over Boolean spaces. Boolean spaces have 
the following property (partition property [ 11, p. 121): if X is a Boolean space and 
{ Ni ] i E I} is a covering of X by open sets, there exists a partition (Ml , Ml, . . . , Ad,) 

of X, such that every element A4” of the partition is a clopen subset of ,Y contained 
in Ni for some in I (depending on j). 

1.1. Lemma. Let (X, Y ) be a variety of preadditive categories. Suppose X is a 
Boolean space. Then two objects A, B of (X, Y ) are isomorphic in (X, Y ) if and on- 
ly if they are isomorphic in Y X for all x E X. 

Proof. Suppose that A and B are isomorphic in Y ,Y for all XE X. Then for each 
x E X there exist sections &), ~(a’) of .W om I (A, B), .v/otn , (B, A) resp., defined in a 
neighborhood of x, such that -c(-‘j(x) 0 O(“)(X) = lA and @(x) 0 r(s’)(~) = ls in Y,~. But 
then 8’) 0 0 f-r) = lA and g(X) 0 r(X) = lB in a neighborhood of x. Ry the partition 
property it is possible to construct two global sections GE f(X, .wonz , (A, B)), 
T E r(X, #Y’ot?Z r (B, A)) such that TO 0 = l,, o 0 T = 1 B. Hence A and B are isomor- 
phic in (X, Y ). The converse is obvious. El 
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If A is an object of a variety of preadditive categories (X, y’), we define the zero- 
set z(A) of A as the subset z(A) = {XFX i A is a zero object in yx} of X. 

0.2. Lemma. Let (X, # ) be a variet P of preadditive categories and let A be an ob- 
Ject of (X, I ). Then z(A) is an open set in X. If X is Boolean, then z(A) is a clopen 
set in X. 

Proof. z(A) is the subset of X on which the two global sections 0 and 1 of 
.ryom , (A, A) coincide. q 

Finally, two varieties (X, Y ), (A”, Y ‘) of preadditive categories are isomorphic if 
there exist (i) a homeomorphism @ : X-+X’, (ii) a one-to-one correspondence 
@ : Ob( 7 )+Ob(. y ‘) and (iii) a homeomorphism @.A, B) for each ordered pair 
(A, B) of objects of (X, y ), @(A, B) : .Fom I (A, B)--Mom I @P(A), G(B)), which 
maps ,Worn, (A, B), isomorphically onto -Yom I +P(A), @(B))@(,, for all XE X and 
induces a functor G-r : ilx + f it-r1 for all x E X. 

2. Abelian varieties of categories 

Let (X, I ) be a variety of preadditive categories and let Y be a subset of X. We 
define the category of sections of (X, 1 ) over Y, denoted by r(Y, j ), as the 
category whose objects are the objects of (X, y ) and whose morphisms are defined 
as Hom,-,lV , ,(A, B) = r( Y, .Horn I (A, B)) for every ordered pair of objects A, B. 
Thus the morphisms of A into B in r( Y, 1 ) are the sections of 3om y (A, B) over 
Y. The category r( Y, r ) is clearly a preadditive category. In particular r(X, y ) is 
the categocv of global sections of (X, Y ). A variety of preadditive categories (X, Y ) 

5% an abefian variety of categories if r(X, % ) is an abelian category. Note that the 
morphisms of the category r(X, Y ) are exactly what we had defined to be the mor- 
phisms of the variety (X, Y ) in Section 1. 

Recall that a dense subcategory .d of an abelian category ‘6’ is a full subcategory 
of / such that for every exact sequence O-+A’+A+A”+O in ‘rs’, A is in ,d if and 
only if both A’ and A” are in 43). If .d is a dense subcategory of an abelian 
category f, it is possible to construct the quotient category Ud (in the sense of 
Gabriel) and / 1.:~’ turns out to be an abelian category. If (X, 1/ ) is an abelian variety 
of categories and Y is a closed subset of X, let *“Jy be the full subcategory of 
f(X, 7 ) whose objects are all the objects A of (X, Y ) with z(A) 2 Y. Clearly .+ is 
a dense subcategory of T(X, 1 ). Hence it is possible to construct the quotient 
category f(X, r )/.:g y. We denote the canonical functor T(X, Y )-4(X, % )/+ by 
T,.. 

Now, we may define! a functor T; : r(X, Y )-+r( Y, % ) in the following way: 
Ti (A) = A for all A E Ob!c(X, f )) and if f E Homrcx, r ,(A, B) = T(X, Mcbrn r (II, B)), 

P; CP, E Horn,, ), , ,(A, B) = I-( Y, Worn, (A, B)) is the restriction of the glob:11 sec- 
tion f to the closed subset Y of X. 
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2.1. Proposition. Suppose that X is a Boolean space. Then there exists a unique 
functor Fy : r(X, “t’-)I& +r(Y, V’) such that FY Ty = T& Moreover Fy is an 
isomorphism of categories. In particular r(Y, 1) is an abelian category for all 
closed subsets Y of X. 

Proof. Recall that r(X, #‘)/J&’ is defined as the category whose objects are the 
objects of QX, y-9 and whose morphisms are defined by 

where A’ranges in the set of the subobjects of A in r(X, V) such that A/A% .d, and 
B’ ranges in the set of the subobjects B’ of B in r(X> ‘% ‘9 such that B’E ,.d,. Since 
Y is a closed subset of X, the restriction r(X, Horn I (A, C))+r( Y, .#om y (A, B)) is 
a surjective homomorphism whose kernel consists of all the global sections of 
#‘om y (A, B) which have zero restriction to Y ([l 1, Lemma 3.31). Hence we only 
have to prove that the canonical homomorphism 

(1) 

is surjective and that its kernel consists of all the elements f E Hom,-tx, y ,(A, B) = 
r(X, .%om y (A, B)) whose restriction to Y is the zero section. 

Let f E Hornrfx, y ,(A, B). Then f is in the kernel of the canonical morphism if 
and only if there exist A’, B’ subobjects of A, B in I”(X, ‘V ) with A/A’, B’E ,B y such 
that if i* 4’ *A and p: B-B/B’ are the injection and the projection in r(X, r ), 
then p+oi=O. But ifA/A’,B’E&,, then i(y):A’+A and p(y):B+B/B’are 
isomorphisms in Y, for all y E Y, so that po f 0 i = 0 implies f(y) = 0, i.e. the 
restriction of f to Y is the zero section. Conversely if the restriction of f to Y is 
the zero section and if i : A’ -+A is the kernel off in r(X, Y ) then it is easy to check 
that i(x) : A’ *A is the kernel of f(x) in ‘rx for all XE X. Hence i(y) is an isomor- 
phism for all y E Y so that A/A’, the target of the cokernel of i : A-A in r(X, ~‘9, 
is a zero object in r_,, for all y E Y. Hence A/A% dy. But then it is clear that f is 
in the kernel of the canonical morphism (1). We have thus proved that the kernel 
of the canonical morphism (1) consists of all the global sections of Zom 7 (A, B) 

whose restriction to Y is zero. Let us now prove that the canonical morphism (1) 
is surjective. 

Let A’, B’ be subobjects of A, B resp. in r(X, y ). Suppose that AM’ and 
B’ are in ,dy. Then the inclusion A’ -+A and the projection B-+B/B’ are 
morphisms in r(X, y 9, i.e. global sections, and their multiplication induces 
a sheaf morphism Zom y (A, B)+Xom y (A’, B/B’). If x@A/A’)nz(B’) this 
sheaf morphism induces a group isomorphism between the two stalks over 
x. Hence the sheaf morphism Horn 7 (A, B)-+Zom y (A’, B/B’) induces a group 
isomorphism r(Y, Zom f (A, B))-T( Y, Xom y (,4’, B/B’)). By composing with 
the restriction T(X, .%om y (A, B))-+T( Y, Xom 7 (A, B)) we get an epimorphism 
T(X, Zom 7 (A, B))+T( Y, Xom 7 (A: &‘Z?‘)). Hence for every element f of 
I+~mrcx, 7 ,(A’, B/B’) there exists an element g of Hornrfx, 7 ,(A, B) such that f and 
g ‘have the s&me restriction to Y. Therefore (1) is surjective. Cl 
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2.2. Corollary. If (X, Y ) is an abelian variety qf categories and its basis X is a 
Boolean space, thaw 1 x is arr abelian category for ail x E X. q 

Let us conclude this section with another definition. An abelian variety (X, Y ) 
of categories is said to be a spectraf variety if the category r(X, ,! ) is a spectral 
category (41, i.e. an abelian categoJy with exact direct limits and a generator in 
which every exact sequence splits. 

3. The decomposition space of a preadditive category 

In Section 4 we shall associate a variety of preadditive categories to each abelian 
category. We need a topological space, which will serve as a basis for the associated 
variety of preadditive cate_<ories. Our aim in this section is to construct that 
topological space. 

Recall that the center Z(d ] of a preadditive category 7;’ is the ring of all functorial 
morphisms of the identity functor of ‘4 into itself [It]. It is a commutative ring; an 
element 14 of Z( ,J ] consists of a morphism u A : A-+A for every object A of K such 
that fu,,, = uBf for all morphisms f : A -49 in ‘6. Consider the Boolean algebra 
S[ / J of all idempotent elements of Z[‘d 1: if u, o&[~/;‘], their sum in B[(r, ] cor- 
responds to the endomorphism Us + vA - uAoA of A for every object A of %‘, and 
their product corresponds to the endomorphism u_~ vA . The decomposition space 
X[ t ] of 1 is the topological space Spec B[I~] with the Zariski topology. It is a 
Boolean space and the sets K(*/:],,={MEX[%] lu$M}, u~B[t’], are the clopen 
sets in X(’ ] and form a basis of open sets for the topology (If X[‘h 1. If ‘d is a 
Grothendieck category and C7 is a generator of ‘4, the center Z[% ] of %’ and the 
center of the ring Horn, (W, U) are isomorphic [lo], so that the decomposition 
space X[ / ] of / is homeomorphic to the decomposition space of the ring 
Hnm,(U,U) [ll, p. 81. 

A category / is a null cawgory if every object of % is a zero object. A preadditive 
category 1 is indecomposabk if it is not a null category and for all preadditive 
categories 4 I* / 2 with 4 I x lz equivalent to (6, either % 1 or % 2 is a null category. 
Note that if / !, / z are preadditive categories, Z[Z 1 x Q] is canonically isomorphic 
to Z]’ J x Z[ ~1, so that X[ / l x +] is the disjoint union of two clopen subsets 
canonically homeomorphic to X[ /r] and X[LQ] respectively. Also note that 
equ;: =r-_ %f categories have isomorphic centers and homeomorphic decomposition 
spaces. It is ncti <ifficult to check that a preadditive category ‘6 is indecomposable 
if and only if B[’ ] = @, ‘i >_ i.e. if and only if X[K ] has a unique point. 

Iet us conclude this section by relating the decomposition space to the spectrum 
of a Grothendieck category. 

Recall that if / is a Grothendieck category, the spectrum Sp(?) of % is the set 
of injective indecomposable objects [3]. lf ‘6 is spectral, Sp( K ) is then 
I isomorphism classes of simple objects. In this c?se if I%(Y) is the full 
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subcategory of % generated by all objects of V which are direct sums of simple 
objects and Cont(k?) is the full subcategory of Y? generated by all thz objects of g 
which have no simple subobjects, then g is equivalent to Dis( %‘) x Cont(‘Q [4]. 

3.1. Lemma. Let %’ be a spectral category. Then there is a canoni& injection of 
Sp(Q into E[%‘]. The image of every element of Sp(V) is an isolatedpoint of X[U], 
and the closure of the image of Sp( U) in X[ U] is homeomorphic to K[Dis( U)] pnd 
is the Stone-tech compactification of the image. 

Proof. Let U be a generator of K Then there is a one-to,-one correspondence 
between Sp(%‘) and the set of isomorphism classes of simple subobjects of U. 
Moreover U is isomorphic to the direct sum (BiESp(,) Vi)@ UcOnt, where for every 
i E Sp( %‘), r/i is a direct sum of simple objects of type i and ucont has no simple sub- 
modules. Note that the cli’s and L/,,,t are fully invariant in U. Thus 

End, (LI)z n End, (ui) x End,,(U,,,,), 
so that 

iESP(#) > 

B[x']s 
( 
n B(EnWW xB(En&(~cont)). 

ieSp(7:) > 

Now B(End,;Q)) = (0, 1) for all k Sp(%‘). Therefore X$6’] is homeomorphic to 
X[Dis(%‘)] UX[Cont(V)] and X[Dis(%‘)] is the spectrum of the ring (0, l}‘P(” ‘, i.e. it 
is the Stone-Tech compactification of Sp(K) with the discrete topology. 0 

4. The variety of preadditive categories associated to an abelian category 

In the previous section we have associated the Boolean algebra B[%'] and its spec- 
trum X[%‘] to the preadditive category g. Now suppose that K is abelian, and fix 
a maximal ideal A4 of B[ %'I, i.e. a point 1M of X[ ??I. Consider the full subcategory 
.d~ of %’ whose objects are the objects A of %’ such that uA = 0 for some u E B[ %'I, 
u @M. Let us show that e& is a dense subcategory of %‘. 

4.1. Lemma. If %’ is an abelian category and M is a maximal ideal in B[%'], dM is 
a dense subcategory of 6. 

Proof. For every exact. sequence O-W+A-+A”+O in Y;‘, the diagram 

0 -- A’ -+A -------+A"~(-) 

0 - A’ - A -A A” -_, 0 

(2) 

is commutative. Mence if A is in .cL/M and uA = 0, then uA’= 0 and uA”= 0, so that 
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A’ and A” are in .&. Conversely if A’ and A” are in .d, and u’, u’%B[V]\M with 
r&.=0, El; -=O, then u=u’u”EB[YT]\M and uA’=O, uA”=O. The commutativity of 
(2) gives UA =O, i.e. A EZY’,+,. 3 

Since .z+, is a dense subcategory of %‘, we may construct the quotient category 
U.Z& [3]: the objects of ‘K/J+ are the objects of g and if A, B are objects of 
/; /. z& 

Horn ic ,-+(A, B) = lim Horn& (A’, B/B’), 

where A’ ranges in the set of the subobjects of A such that A/A’cO/M and B’ 
ranges in the set of the subobjects of B such that B’EJ&. The category Ud, is 
an abelian category [3, Prop. III. 1.11. We shall denote the canonical functor 
‘f -+ f /.:d.,, by T,,, l it maps the object A of %‘ into the object A of %Ysv’~ and the 
Imorphism f e Horn, (A, B) into its canonical image 

r%,(f) E l$ Horn, (A’, B/J) = Hom,;,,,(A, B). 

Our next proposition gives another description of the groups of morphisms in 

/ / :i;,f. 

4.2. Propooition. Let ‘f: be an abelian category, Z[Y ] be its center and B[ ti ] be the 
Boolean algebra of all idempotents of Zi[‘r;‘]. Let A, B be objects of %. Then 
Horn I (A, B) has a natural structure of Z(f~:‘]-module. If M is a maximal ideal in 
B!/ ] and r%,(A, B): Horn, (A, B)-+Hom /,/ +JA, B) is the group homomorphism 
induced by the functor TiI, then T,(kii B) is surjective and its kernel is 
MHom, (A, B). Hence Horn ‘, ~ ,,(A, B) is canonically isomorphic to Horn, (A, B)/ 
l Hom , (A, B). 

(Recall that if R is a ring, B(R) is the Boolean algebra of all central idempotents 
of R, M is a maximal ideal of B(R) and C is an R-module, then 
MC= {ex/ecM,xeC). It is an R-submodule of C [ 11, p. 71.) 

Proof. If ZIE Z[ / ] and f E HomJ.4, B), define their product as uf -7 usf. It 
is clear that in this way Horn, (A, B) becomes a Z[%‘]-module. Let US prove that 
7&A, B) : Horn, (A, B)-+Hom t ,*,,,(A, B) is surjective. Let R be an element of 
Horn, ,,,(A, B). Then 5 is the image of an element h E Horn, (A’, B/B’), where 
‘--! ‘, B’ are subobjects of A, B resp. with A/A’ and B’ in .Y&. There exist 
14, I’ E B[ ’ ]\ iv such that u,~ .+ = 0 and vg’== 0. Since uA : A+A is idempotent, there 
exist a subobject A” of A and an epimorphism p: A-+A’ such that if i : A’+A is 
the inclusion then ip = uA and pi= I,+:- [12, ex. 2.1.5). Similarly there exist a sub- 
object B” of B and a monomorphism j : B/B” -+B such that if 4: B-+B/B” is the 
projection then jq = VB and qj = lB,Bw. Let r : A -+A/'A' be the canonical projection; 
thenru,=u.., j ,r=O, i.e. A’=imu,Arkerr=A’ [12, p. 341. Similarly let k: B’-+B 
be the in&ion; then vRk=kvB I = 0, i.e. B’= im kc ker VB== B”. Finally let 
.’ . 1 . 1 4 ’ -+A and i” : K--W be the ir,clusions and q’,: B-+B/B’, q”: B/B’-+B/B” be 
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the canonical projections, so that i= i’i”, q = q”q’. We shall prove that &(A, B) 
is surjective by showing that TM(A, B)(jq”hi”p) =fi, i.e. by showing that the 
image of jq”hi*pEHomg(A, B) in Horn g,_dM(A, B) is equal to the image of 
Vt E Horn&A’, B/B’) in Horn vld.JA, B). Now if t : A-A/A” is the canonical pro- 
jection, i.e. t is the cokernel of i : A’QA, then ~,~“f = ZU~ = tip = 0 and therefore 
u~,~~=O (t is an epimorphism). Hence A/A” is in JI?“. Similarly B” is in J&. 
Hence it is sufficient to prove that the image q( jq”hi”p)i of jq”hi”p E Horn&A, B) 
into Horn&A“, B/B”) is equal to the image q”hi” of h E Horn&A’, B/B’) into 
Horn&A”, B/Bn). By computing: q( jqAhit’p)i= (qj)q”hi”(pi) = lB,~Pq”hiNIA~ = 
q%“. This shows that TM(A, B) is surjective. Let us determine its kernel. Let 
f E Horn&, Cz). Then TM(A, B)(f) = 0 if and only if im f is in &.J3], i.e. if and 
only if there exists UE B[g], u@M, such that uBf =O. Now if usf =0 with 
u EB[~ 1, u $M, then f =(l - u)f EMHom,(A, B). Conversely if f EMHorn&& B), 
then f := uBg with u E M and g E Hom,(A, B), so that 1 - u @ M and (1 - u)f = 
(1 - z&u&= 0. Hence MHom,(A, B) is the kernel of T,(A, B). Cl 

Let us fix two objects A and B of an abelian category K Then it is possible 
to associate a sheaf of abelian groups over X[C ] to tine Z[ VI-module Horn&A, B) 
(see Pierce [ll, p. 181). If MEX[%], the stalk over M of the sheaf asssci- 
ated to Horn&A, B) is simply Hom,(A, B)/MHom,(A, B). But in our case 
Horn&A, B)/MHom,(A, B) is canonically isomorphic to HomgzdJA, B). Via 
these canonical isomorphisms it is possible to give the following description of she 
sheaf over X[%] associated to Horn&l, B) (we shall denote this sheaf by 
Nom,-(A, B)): for MEX[V], set 

and 
.fomti(A, B)M = HomK,,,,(A, B) 

Let n : Horn&A, B)-+X[ u’] be given by n-‘(M) = Horn&A, B)M. Let TM : %’ -+ %/dM 

be the canonical functor and let TM(A, B) : Horn&A, B)-+Homg,_dJA, B) be the 
induced group homomorphism. For f E Horn&A, B) and ME X[ U] set z$A, B)(M) = 
7’,‘,(A, B)(f) so that ‘rf(A, B) is a mapping X[ U] -‘Rom&A, B). Topologize 
.H’om&A, Bj by taking all sets T~(A, B)(X[%‘],), with f E Horn&A, B), e E B[ g], as a 
basis for the open sets. In this way we have constructed a sheaf of abelian groups 
Xom&A, B) over X[%] [l l] for each ordered pair (A, B) of objects of E’. 

4.3. Theorem. If $? is an abelian category, the topological space X[ ~3’1, the class 
Ob( @‘) = Ob( u’), the sheaves of abelian groups Horn,-(A, B) (A, BE Ob( @)) and the 
categorres WdM (ME X [ %‘I) form a variety of preadditive categories. 

Proof. We must show that if A, B,C are objects of %:‘, the mapping 
c: .%‘om,(A, B) + Xom,-(B, C)-+.#bm&A, C) defined by 
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for MEX[%IJEHO~&A,B), gEHom,(B,C) is continuous. Let us fii&f,-,~~[~], 
fo E Horn, (A, B), go E Horn,@, C) and an open set ~(~4, C)(X[ U],) of .%m,-(A, C) 
containing 

c( T,,(.A, BUo), T,&% Wgo)) = TM@ O&o Ofoh 

with ho E Hom,(A, C), e E B( F]. Since TM&A, C)(go ofo) E q&A, C)(X[ f],) we 

have that TM&A, C)(go ofo) - - qJA, CMMO), i.e. TM&A, C)(go Oh) = TM&A, C)(hob 

By Proposition 4.2 it follows that goof0 - ho E MoHom,(A, C), i.e. go of0 - ho = 
uolo for some u. eNPo, lo E Horn&A, C). Now Q(A, B)(f(%‘]ti, _& is a neighbor- 
hood of TM&A, B)(Jro) in .@%mi(A, B), and ccs,(A, B)(X[‘Gld, _uO)) is a neighbor- 
hood of 7&(A, B)(go) in .#‘om,-(B, C) and it easy to verify that 

This proves that c is continuous. 
Moreover, accordingto [l I], foreachA eOb(% ) themappingX[f++.vilom,-(A, A), 

M- T*,(A, A)(l,), is continuous. cl 

Thus we have associated a variety of preadditive categories (X[%], (5’) to every 
abelian category /. . 

Let us conclude this section with a corollary which will be useful in the sequel. 

4.4. Corollary. Let A, B be objects of an abelian category Y;. Then the set 
( M E X [ f ] 1 A and B are isomorphic objects of ‘d /‘y/M) is an open set in X [ %‘I. 

Proof. Let S be the set in question. If ME S, by Propositior! 4.2 there exists 
f E Horn, (A, B) such that &(A, B)(f) E Hom,,,:.:,,(A, B) is an isomorphism. By [3) 
the objects ker f and coker f of % are in .+,,, i.e. they are zero objects in US&.+ 
Thus M~z(kerf)nz(coker f)cS. By Theorem 4.3 and Lemma 1.2 z(ker f)n 
z(coker f) is open in X[ % 1. Hence S is an open set. Cl 

5. Reduced varieties of preadditive categories 

In Section 4 we associated a variety of preadditive categories (X[‘h 1, x) to every 
abelian category t. The stalks of (X[(ti 1, I&) were the quotient categories UC/,, 
ME X[ ’ 1. Our aim is to study spectral categories [4], i.e. Grothendieck categories 
in which every exact sequence splits, and in Section 7 we shall study the categories 
/ / itI, with ‘/ spectral, in detail. For the time being we only need the following 

result. 

5.1. Lemma. Assume that / is a spectra/ category and M is a point of X[ % 1. If A, B 
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are objects of g, then in W&M either A is isomorphic to a subobject of B or B is 
isomorphic to a subobject of A. 

Proof. By [7, Theorem 1.141 we may suppose that V is the category of all tlon- 
singular injective right modules over a regular right self-injective ring R. By 
[7, Theorem 3.31 there exists a central idempotent e E R sucfr that Aes Be and 
B( 1 - e) 5 A( 1 - e). Without loss of generality we may suppose that M is a maximal 
ideal of the Boolean algebra of all central idempotents of R. Then either e EM or 
(1 - e) EM. If eczA4 then the two objects A and A(1 - e) of %‘MM are isomorphic. 
Similarly for B and B(l - e). Thus B is isomorphic to a subobject of A in WJ&. 
On the other hand, if (1 -e) EM, A is isomorphic to a subobject of B. 0 

5.2. Corollary. If V if a spectral category and M is a point of X[ %‘I, then (6%~~~ is 
an indecomposable category. 

Proof. Every decomposable category 9 contains two non-zero objects A, B with 
Horn, (A, B) = 0. 0 

We szy that a variety of preadditive categories (X, Y ) is a reduced variety if X 
is a Boolean space and g, is an indecomposable category for all XE X. 

5.3. Corollary. If %’ is a spectral category, the variety of preadditive categories 
(X[ %‘I, 6) associated to V is a reduced variety. III 

Note that if % is a spectral category, the categories %‘/M’~, ME X[ V], are abelian 
categories in which every exact sequence splits [3; Cor. III.l.l], but they are not 
necessarily spectral categories (see Example 9.1). 

6. The isomorphism theorems 

The object of this section is to prove that for spectral categories and reduced spec- 
tral varieties of preadditive categories the correspondences %‘w (X[ W], @) and 
(X, y: )I.-, T(X, Y’ ) are inverses of each other up to isomorphism. 

6.1. Theorem. Let (6’ be an abelian category, let (X [ V], @) be the variety of pre- 

additive categories associated to g, and let r(X [ %‘I, +?) be the category of global sec- 
tions of (X [ u’], f’). Then %’ is canonically isomorphic to r(X[ %‘I, C). 

Proof. Let us define a canonical functor I : g -T(x[ $5’1, @?) in the following way: if 

A is an object of K, set I(A) = A and if f : A -+B is a morphism in %’ let 
I(f) E~(Z%‘], Horn&l, B)) be the global section of the sheaf .8om&l, B) over 
X[ $::I, for which I(f)(M) is the image of f E Horn, (A, B) into Hom,,G~A&l, B). 
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I is clearly a functor and induces a bijection between the classes Ob(Q and 
Ob(T(I[,+ 1, i)). In order to prove that I is an isomorphism of categories we have 
to show that it induces a group isomorphism Horn, (A, B)+r(n[ %‘I, ,vPom&l, B)) 
for all A, BE Ob(%‘). But this is exactly the isomorphism of Z[g]-modules of [ 11, 
Theorem 4.51 (see Proposition 4.2). Cl 

6.2. Corollary. If ‘is‘ is an abelian (resp. spectral) category, then (X[U], ‘G;) is an 
abelian (resp. spectral) variety of* categories. III 

6.3. Theorem. Let (X, Y ) be a reduced variety of preadditive categories. If x E X, 
the set M,= {UE B[f(X, Y )] 1 +(x)=:0 f or ah A E Ob( F )} is a maximal ideal of 
B[T(X, r )] and the mapping @ : X-G[T(X, :: )], e(x) =M”, is a homeomoqrhism. 

Proof. Consider the ring morphism B[T(X, 7 )] -+ B[ Y J such that tiA - UA(X) for 
every object A. It is surjective and B[ r,] = (0, 1) because r, is indecomposable. 
Since My is its kernel, MX is a maximal ideal of B[T(X, r )] . 

Let x, y be two distinct points of X. Since X is Boolean, there exists a clopen set 
Y of X with x@ Y and YE Y. If A E Ob( g ) define uA E Homrc,u. I ,(A, A) = 

FIX, .wom, (A, A)) by u,4(t) = 1A if te Y, and uA(t) = OA if t EX\ Y. Then 
UEB[T(X, 7 )], u(x)=0 and u(y)#O. Thus M,#M, and the mapping # is 
injective. 

A basis for the open sets of X[T(X, I )] is given by the sets 

X,={MEK[T(X, y )] IeQM}, 

eEB[f(X, 1 )], and 

But since Y x is an indecomposable category, either eA(x) = OLq or eA (x) = IA. Hence 

u {xEXleA(X)= 1.4}* 
AeOb( * ) 

BeIt {XE X f q&x) = IA) is the set on which ,the two global sections lA and eA of 
f(X, worn, (A, A)) coincide and it is open. Hence QI-*(Z&J is open and @ is con- 
tinuous. Note that if X,#0, i.e. if e#O, then there exists XE X with e(x) #O. But 
e(x) E a[ Y ,] = (0, 11. Hence e(x) = 1 and e $ A$. Thus #(X) n X, # 0 and the image 
of the continuous injection @ is dense in X[r(X, Y )]. Since X is compact and 
3E[r(X, y )] is Hausdorff, @ is a homeomorphism. Cl 

Remark. By Theorem 6.3 and by [7, Prop. 4.11 if (X, 1 ) is a reduced spectral 
variety of categories, then X is a complete Boolean space. 

Ci.4. Theorem. Let (X, Y ) be a reduced abelian variety of categories and let 
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( fi[r(X, Y’)], r(X, V)) be the abelian variety of categories associated to the abelian 
category r(X, ,V). Then the varieties (X, 7.) and (X[S(X, Y)]J(X, v )) are canoni- 
cally isomotphic. 

Proof. Let @ : X+[r(X, V’)] be the homeomorphism defined in Theorem 6.3 
and @ : Ob(* )*Ob(r(X, V’)) be the identity mapping. We have to define a 
homeomorphism @(_4, B) for each ordered pair (A, B) of objects of (X, %), 
@(A, B) : Horn p (A, B)-,3100mflx, y ,(A, B), which maps Zom F (A, B), isomorphic- 
ally onto fornrtx, F ,(A, B)@txj for all XE X and induces a functor #$ : %;. -+ 
r(X, %’ ,/J$~~~ for all XE X, where d.(X) is the full subcategory of QX, Y ) whose 
objects are the objects A of r(X, Y) such that uA =O for some u E B[T(X, f )J, 
u $ M,. Note that if u E B[T(X, V)], then u $ M,. A’ and only if u(x) #O. But (X, r ) 

is reduced and u(x) E B[ Vx], so that either U(X) = 1 or u(x) = 0. Therefore an object 
A of r(X, % ) is in .deo if and only if uA = 0 for some u E B[T(X, Y”)] with u(x) = I. 

By Lemma 1.2 it easily follows that the objects of @‘ecx> are exactly the zero objects 
of gx. Let 

@(A, B) : flwn y (4 B).r -+ Homr(x, y )M,~,, (A, B) 

= r(X, Nom T (A, B))/M,r(X, Nom y (A, B)) 

be the canonical isomorphism of 111, Lemma 5.2(c)]. Then @(A, B) has the required 
properties. Cl 

We have thus proved our main theorem: 

6.5. Theorem. If we associate the reduced spectral variety of categories (X[ ‘Is’], @‘) 
to the spectral category % and the spectral category r(X, 3’ ) to the reduced spectral 
variety of categories (X, “Li), we get a one-to-one correspondence between the 
isomorphism c/asses of reduced spectral varieties of categories and the isomorphism 
classes of spectral categories. 0 

Now that we have proved Theorem 6.5 we may begin our study of spectral 
categories. We shall investigate the properties of spectral categories by analyzing the 
structure of the associated reduced spectral variety of categories. 

7. The stalks of the variety associated to a spectral category 

In Section 4 we have associated an abelian variety of categories (Z[ U], e) to every 
abelian category $K The stalks of (x[V], ??) are the quotient categories VC$,, 
ME~[%]. In this section we study the categories @VA&, MEZ[%‘], when g is a 
spectral category. We shall make use of the results of [7]. We are primarily 
interested in the class of all the isomorphism classes of objects of CUCdM. 
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In this section d denotes a spectral category. If M is a point of X[V], we shall 
denote by .“{ ~‘.d~} the class of the isomorphism classes of %WM. If A is an ob- 
ject of v /.v; u, [A] will denote the class of all the objects isomorphic to A in W&M. 
Thus Y{ t/.~&} is the class whose elements are the classes [A], where A ranges in 
Ob( 8 MM). By [3, Prop. III. 1. l] %VdM is an abelian category and by [3, Cor. 
III, 1.11 every exact sequence in SVM’~ splits. Thus in 4{ SUM} we may define a 
composition law + by [A] + [B] = [A @B] and a relation d by setting [A] s [B] if 
A is isomorphic to a subobject of B in u;‘/ssl;w. The composition law + and the rela- 
tion s have the following properties: 

(i) + is associative and commutative; 
(iii) if 0 is a zero object in d%?JM, then [0] + [A] = [A] for every [A] E _“{ $X+,,}; 
(iii) for every [A J, [BJ E .fl{ %/.+}, [A] s [BJ if and only if there exists 

[CJ E.${ f /.&,} with [A] + [CJ = [BJ; 
{iv) s is reflexive and transitive; 
:v) 5 is antisymmetric: if [A], [B) E Y( KU&), [A] I [B] and [B] s [A], then 

tAJ=WJ; 
(vi) if [AJ,[BJE.F{%/.s$,& either [AJs[B] or [BJs[A]; 

(vii) if [AJ, [B], [CJ E ,q{ UW’,~) and [A] s [B], then [A] + [C] s [B] + [Cl. 
The proof of (i)-(iv) is trivial. and (vi) follows from Lemma 5.1. Let us prove (v). 

If [AJs[BJ~~~[BJs[AJ, by(iii)thereexist CandC’withA@CzBandB@C%A 
(z in +&). Let f, f’ be elements of Hom&A@C, B), Hom,,(B@C’, A) resp. 
such that TV(f) and T&‘) are isomorphisms. Then there exist u,z.bB[%‘]\M 
such that j and f’ induce isomorphisms uAoc(A@C)-wg(B), u&-p(B@C’)-+ 
&(A). But then uAtrL(A) is isomorphic to a subobject of z+&(B) in % and 
similarly u&#) is isomorphic to a subobject of QUA(A). By Bumby’s Theorem 
17, Theorem 1.2J, (Schroeder-Bernstein theorem for the injective modules), 
u,.&(A) and u&(B) are isomorphic in y:. Then [A] = [u,&(A)] = [z+&(B)] = [B] 
in Y{ U:Y$}. 3 

If A is an object of an abelian category, A is purely infinite if A @ -4 s A, and 
A is directly finite if the zero subobject is the unique purely infinite subobject of 
A. Note that an object is purely infinite and directly finite at the samt: time if and 
only if it is a zero object. 

7.1. Lemma. If / is a spectral category, every object in 7;%~M is either directly 
finite or pureiy infiniie. 

PEW& We have to prove that if an object contains a non-zero purely infinite sub- 
object then the object itself is purely infinite. Let A be an object of %XQ;fiM and sup- 
pose that A contains a non-zero purely infinite subobject 8. Then there exists 

,M such that U.&A) contains us(B) as a subobject in %’ and u,(B) is a 
non-zero object in ‘4. Furthermore since Bs B@ B in %WM we may suppose that 
~~~~~~~ and uB(B)@uB(B) are isomorphic in K Therefore L+(B) is purely infinite in 
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V. By 17, Prop. 7.4 and Cor. 7.71, there exist orthogonal idempotents u’, U” of B[ U] 
such that u’+ u”= 1, &(A)@ u:(A) = A, z&(A) is purely infiinite in V and ui (A) is 
directly finite in V’. Now z+&(B) is purely infinite and is contained in z&l) which 
is directly finite. Hence u&(B) is a zero object in V. Since B is a non-zero object 
in %VJ&, it follows that u~‘knZ, so that U”EM and therefore U/GM. Hence .4 is 
isomorphic to u&Q in V/d Ma It follows that A is purely infinite in v%[~. q 

By Lemma 7.1, the direct sum in %‘/J& of a directly finite object and a non-zero 
purely infinite object is purely infinite. It is clear that the sum of two purely infjinite 
objects is purely infinite. By [7, Theorem 3.61 and by the next lemma, the sum of 
two directly finite objects is directly finite. 

7.2. Lemma. Every directly finite object of W.d, is of the form TM(4) for u 
directly finite object A of W. Every purely infinite object of W.+, is of the form 
TM(A) for a purely infinite object A of %‘. 

Proof. Any object of %& is of the form TM(B) for some object B of %. By [7, 
Theorem 7.4 and Cor. 7.71 there exist u, U’E B[ ‘G’] with z+(B) directly finite in Y;, 
z&(B) purely infinite in ‘G’ and u + u’ = 1. Hence either ueB[K]\M or 
u’M[%‘]\M, so that either us(B) or u;(B) is isomorphic to B in (cy/&. Hence 
every object of K/s& is of the form TM(A), where A is either directly finite or 
purely infinite in %‘. If A is purely infinite in %‘, TM(A) is purely infinite in Y;%+ 
Suppose that A is directly finite in %‘; if u E B[ ‘t’]\M and uA(A) is purely infinite 
in w’, then Q(A) =O. From this and from Lemma 7.1 it easily follows that TM(A) 
is directly finite. 0 

7.3. Proposition. If A is a directly ftnite object and B is a non-zero purely infinite 
object in WL.+, then [A] + [B] = [B] in cY{ W&}. 

Proof. If [B] I [A], then [B] = 0 (because A is directly finite and B is purely in- 
finite), contradiction. Hence [A] I [B] and [B] I [A] + [B] s [B] + [B] = [B]. Cl 

We may kiC?v give a first description of (4{ %MM}, +, 5). The class .fl{ WC&} is 
the disjoint union or ti;’ 3 classes, the class -l”f{ cl’/s&} consisting of all the isomor- ___ 
phism classes of directly fir&&P.- ;j+s of K/J& and the class &,{ 5%&} consisting 
of the isomorphism classes of all non-z<:o purely infinite objects of %‘/.cr/,. Any 
element of Yf{ WJ&} is < than any elemer:: of_. &,{ W-W’~}. Furthermore 
${ K/J&} and &{ W&} are both closed with respect ?o the operation -t, and if 
[A] E 4f{ U/J&} and [B] E &,{ V/J&} then [A] + [B] = [B]. Therefore in order to 
study the behavior of Y{ WdM} with respect to + and 4, it is clear that we only 
have to study the behavior of 4f{ UP&} and &{ %Vs&} separately. 

Let us begin with + ( %YdM}. It is clear that YJ{ WJ&} is a set. Furthermore if 
A, B, C are directly finite objects of %’ and A @Cz BBC then A z B [7, Theorem 
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3.8~. 1t foliows from Lemma 7.2 that (,${ g/~&), +) is a commutat?Pre monoid with 
the cancellation property which is totally ordered in its natural order 12, Cor. X.6). 
It follows that (.+{ u’&}, +) may be embedded as the positive cone of a totally 
ordered abelian group G. By Hahn’s Embedding Theorem [2, Theorem IV. 161, G 
is isomorphic to an ordered subgroup of a lexicographic product L of copies of the 
group of the real numbers IR. The lexicographic product L is constructed over the 

g E G, g>O} of all non-zero principal convex subgroups of G inversely 
ordered (here if LEG, (ft)* denote the convex subgroup generated by h.) Thus L 
is a subgroup of fl(b’r*dc IR. In order to study the embedding of G into 

L, Q n,,,*,, %Y we may compose this embedding with the canonical projections 

Zk : II (fg.5 G R--d?, h E G, h >O. The maps we obtain in this way are group 
homomorphisms @(hj* : G -4R constructed by extending the ordered homomor- 
phisms (h)* -+R, defined by mapping h into 1. Unfortunately the mappings $I(,+,* 
are not ordered morphisms and art not uniquely determined on the elements of G 
which do not belong to (h)*. We may avoid these ambiguities by giving the follow- 
ing definition. 

Let G be a totally ordered abelian group. A real valuation of G is a mapping 
KG=-+ U (00) such that (i) there exists an element h E G, h>O, with u(h) = 1, (ii) 
for all g E G, u(g) = 00 if and only if g does not belong to the convex subgroup of 
G generated by h; (iii) the restriction of v to the convex subgroup of G generated 
by h is a homomorphism of ordered groups. 

Note that Hahn’s Embedding Theorem has naturally let us to this definition of 
real valuation. Clearly any real valuation of G is uniquely determined by an element 
h >O of G. We shall call the real valuation of G corresponding to h E G, h > 0, the 
real valuation of G centred in h, and we shall denote it by oh. 

Let us go back to the commutative monoid .+{ U$,,,}. Recall that if %’ is a spec- 
tral category, Goodearl and Boyle (71 have defined the relative dimension 
&(A : C) of A with respect to C in M (here A, BeOb(%‘), ME X[%‘]), in the 
following way: if eE B[,l ], d,(A : C) is the infimum of all rational numbers m/n 
such that m, n>O and eA(A)” is isomorphic to a subobject of e&C)* (if no such 
nr/n exist, then d,(A : C) = 00) and dM(A:C)=inf{d,(A:C)Ie~B[%‘]\M}. 

7.4. Theorem. Let + be a spectral category, ME X[U: 1. Let G be a totaIly ordered 
abelian group containing $1 f /.~d_~) as a positive cone. Then fbr all direc-tly finite 
objects A, C of f. / :Y’ ,\{, if C#O, then vIcI([A]) = d,&A : C). 

Proof. We have that dM(A : C) = 00 if and only if d,(A : C) = 00 for all 
eE B[ / ]\M, i.e. if and only if eA(A) is not isomorphic to a subobject of e&C)” 
for all n > 0 and for all e. This happens if and only if [A] $ n[C] in JJ( %‘,MM} for 
ail n, i.e. [Ai does not belong to the convex subgroup of G generated by [Cl. But 
t hit is equivalent to qcl( [A]) = -. Since dM(C : C) = 1 17, Prop. 10.1(c)], it remains 
to prove that d,$,(- : C) extends (uniquely) to a homomorphism from the convex 

group of G generated by [C] into !R. This !ollows from 17, Theorem 9.51. Cl 
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We shall return to the study of Yf{ %%&} later (Section 8). Let us pass now to 
Ya{ %‘/dM}, i.e. to the non-zero purely infinite objects of @VA?& The analogue of 
thle dimensions dM for the purely infinite objects of g are the dimensions pn4 defin- 
ed by Goodearl and Boyle 171: 

Let V be a spectral category, let A& X[ U] and let A be an object of %‘. If e, = 0 
for some eEB[V]\M, define pM(A)=O. If eA#O for all eEB[V]\M, define 
,q&l) to be the smallest infinite cardinal a such that for some e E B[U]\A& e&l) 
does not contain a direct sum of Q non-zero pairwise isomorphic subobjects [6, 
Chap. 121. 

It is immediately possible to reinterpret Prop. 12.2 and 12.4 of [6]: ~~(4) = 0 if 
and only if T,(A) is a zero object in %YtiM, p&4) = Ho if and only if TM@) is a 
non-zero directly finite object in %X$,+ For non-zero purely infinite objects the 
definition of pLM now takes the following easy form: 

7.5. Proposition. Let A be an object of SF and suppose that T,(A) is a non-zero 
purely infinite object of %Y&. Then p&A) is the cardinal characterized by the 
following property: for every non-zero cardinal a, p,(A)>a if and only if the 
objects A and aA of ?$ are isomorphic in %YG&. 

(Recall that if A is an object of %‘, aA is the direct sum of a copies of A [7].) 

Proof. If A and aA are isomorphic in %‘,A+, there exists e&[%‘J\M such that 
aeA(A) s~~(A)zsA, so that p,&A)>a. Conversely if a is a non-zero cardinal and 
a is infinite the conclusion follows from [6, Prop. 12.91; if a is finite A=aA in 
%‘A& because TM(A) is purely infinite. Therefore p,&A) has the property stated in 
the proposition. Moreover there cannot exist two cardinals with this property. Cl 

7.6. Corollary. Let V be a spectral category, let a be a cardinal number, and let 
A be an object of V. Then the set {ikkB[V] /pM(A)>a} is an open set in X[%]. 

Proof. Proposition 7.5 and Corollary 4.4. Cl 

Let us consider the class of all mappings f : X [V]-+Card, where Card denotes the 
class of all cardinal numbers. The image of f is a set of cardinals, and therefore 
for every f: X[%]-+Card there is a cardinal { such that f(M)< { for all A& X[%‘]. 
Thus f may be viewed as a function of X[u’] into the interval [O,c[ of ali the 
cardinals less than r and we shall say that f: X[g]-+Card is continuous if 
f: xw-+[4~[ is continuous when fO,c[ has the topology whose open sets are the 
set [0, { [ and the sets ]a, c[, where a ranges in [O, c]. By Corollary 7.6 the mappings 
X[%+-+Card defined by M-,u&A) are continuous for every object A of K In this 
way by 17, Cor. 13.1 l] it is possible to embed the class of all the isomorphism classes 
of the purely infinite objects of % into the class of all continuous functions of X[‘c; ] 
into Card. Note that if f and g are continuous functions of X[%‘] into Card, then 
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there is a partition of X[g] in two clopen sets such that f hg on one of these sets 
and g 2 f on the other set. It follows that if we fix a point ME X[ %‘I the class of all 
germs at A4 of continuous functions of X[%‘] into Card is totally ordered. .And it is 
clear that &{ %/‘.+) embeds as a totally ordered class into the class of all germs 
at M of continuous functions of X[%] into Card. 

8. Grothendieck groups of dense subcategories of spectral categories 

We want to apply our results to the study of the Grothendieck groups of dense 
subcategories of a spectral category. 

Let ‘4 be a spectral category and let (X[ ‘G 1, %) be the associated spxtral variety 
of categories. Let .Y be a dense subcategory of % and suppose that the isomorphism 
classes of the elements of .Y form a set. Under this hypothesis we can construct the 
Grothendieck group K&y ) of .‘j; i.e. the abelian group with one generator [A] for 
each A E .I and with relations [A] + [B] - [C] =0 for all A, B, CE P such that 
A@BzC. 

1 f &, : f -+ ’ / :& is the canonical functor, we may consider the image .vM of .Y’ 
wirh respect to T,,. Clearly . fM is a dense subcategory of “‘/z$,, and it is possible 
to construct its Grothendieck group K&‘+,,). Hence for every ME X[%‘] we have an 
abelian, group KO(. I.,,). Let .~b( .I ) be the disjoint union of the sets K&‘/i,), 
ME X[ / 1. For every A, BE J, UE B[$A ], consider the subset of X&V ) 

Notethat if MEX[/ 1, then T,(A), ~~(B)EY~~so that [T,(A)]--[~“~~~)JEK~(,~~,). 

It is not difficult to verify that the sets [A, B, u], when A, B range in .‘I and u ranges 
in B[ f 1, are a basis of open sets for a topology on . V&Y ) and that N&Y’) with this 
topology is a sheaf of abelial; groups over X[X 1. 

Consider the group homomorphism i : K&r )-+~(X[Y 1, X,,(Y)) defined by 
i([A])(M) = [T,,(A)] for all A E .I. 

8.1. Theorem. The mapping i is a group isomorphim. 

Proof. The group KO(. f ) has a canonical structure of B[ % ]-module: if A E .y’ and 
e E B[ / 1, then e,.,(A) is a submodule of A and therefore it is in Y and we may 
define e[A ] = [e&l)]. The functor TV : i --w/.+,, induces a surjective group mor- 
phism A’(,( ’ PK,( Q,) and it is not difficult to verify that the kernel of this 
morphism is MK,(. / ). Thus KO( +,) ZE K,( .Y )/M&Y ). 

It is now easy to check that X&Y) is the sheaf of abelian groups over X[%‘] 
associated to the B[ ’ ]-module K,(./ ) (see Pierce [l 1, p. 181). Now i is an iso- 
~~~~p~isrn by 11 I, Theorem 4.51. ‘72 
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By Theorem 8.1, the study of K.&Y), when Y is a dense subcategory of a spec- 
tral category, is essentially a ‘local’ problem: K&Y) is the group of global sections 
of a sheaf of abelian groups whose stalks are the groups KO(YM), ME X[U]. Let us 
srtudy the groups KO(YM). 

0.2. Lemma. Let Y be a dense subcategory of a spectral category g and let 
ME I [ V ] l If YM contains a purely infinite object of %‘/k&, then Ko(YM) = 0. 
Otf?erwise KO(YM) is a convex subgroup of the totally ordered abelian group whose 
Fxitive cone is +( %X5&). 

Proof. If A is a purely infinite object of V/d M, then for any directly finite object 
B of YM A@B=A, so that [B] =0 in Ko(YM); and for any purely infinite object C 
of y?M CZ C@C, so that [C] =0 in K&5$). Thus if YM contains a purely infinite 
object of HdM, KO(YM) = 0. 

On the other hand if every object of YM is a directly finite object of %XdM, the 
cancellation property holds in l ” and therefore K&Yh) is a convex subgroup of 
the totally ordered abelian group whose positive cone is ${ %Vs&}. 0 

In particular if ‘6’ is a spectral category, let 5 be the full subcategory of ‘6’ 
generated by all the directly finite objects of ‘rs’. Then 5’ is a dense subcategory of 
%‘, SO that K,(T) is the group of global sections of the sheaf X&Y)\ over X[U]. The 
stalks of &(Y) are the totally ordered abelian groups KO(.gM); moreover KO( &,,) 
is canonically isomorphic to the totally ordered abelian group whose positive cone 
is $( U;‘/.d,). 

Now suppose that <V; .y” are two dense subcategories of a spectral category d. If 
Y’ c Y, the inclusion J ( ‘+ 9’ induces a morphism of sheaves of abelian groups 
X--&!++ X&V’). In particular, if 9 is a dense category, its subcategory .Yn 3 is a 
dense subcategory, so that the inclusion Yf7.7 u --+.Y induces a sheaf morphism 
.&( Yn .JJ)-G’&Y). By Lemma 8.2 this sheaf morphism is surjective and its kernel 
is the restriction .&(Yn Siv of the sheaf &,(.Yn Y’) to the open subset U of 
X[K], where U denotes the set of all ME X[U] such that Y contains a purely infinite 
object A with T,(A) non-zero in %‘A$, [5, 11.2.91. Furthermore the inclusion 
.Y’(I Y-+ 3 induces a sheaf morphism X&V’n 3)-)&(,31). This sheaf morphism is 
clearly injective. Note that X&Y’n .Q= X&S),. We have thus proved the 
following proposition. 

8.3. Proposition. Let .Y be a dense subcategory of a spectral category (6; let U be 
the open set consisting of all ME X[V] such that ,Y contains a purely infinite object 
A with T,(A) non-zero in F/J& and let 9 be the dense subcategory of 8 con- 
sisting of all directly finite objects of %1 Then X&F), c &(.F (7 9’) c .X&F) and 
.Y~(Y) E x0(3 n 9yxo( .F )“. n 

In particular S(X[Q, X0(3)& K&-;zn .u’)~K,(,9) and K&‘r)zK&Fn .v’)/ 
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T(X[‘r:],.~r’&li)u). By (5, Th. II.2.9.31 X&Y’) is isomorphic to a subsheaf of 

-%(*0x1, J\U* Also note that K&y-) ~r(X[ti’], .X&Y)) is a lattice ordered group. 

9. Examples 

9.1. Example. Discrete categories. It is well known that every discrete spectral 
category is equivalent to a category g’ = ni,, Mod-Ki, where the Ki’s are division 
rings and I is the spectrum of ‘I‘ (see Section 3 and [4]). In this case X[F] is 
homeomorphic to /?(I), the Stone-Tech compactification of I with the discrete 
topology (Lemma 3.1). Recall that p(I), as a set, may be viewed as the set of all 
ultrafilters over 1. Clearly KO( X) 5~ h’= Z sp(‘) If J# EB(I), i.e. @ is an ultrafilter 
on I, then the stalk K&P,) of X&F) at 1)/ is ;he ultrapower Z’/ & Note that if I# 
is a free ultrafilter, L’/ ;// is not Archimedean, so that the category %‘/,dzl, which 
is an indecomposable abelian category in which every exact sequence splits, is not 
a spectral category. In fact it easily follows from [7] that the groups K&F) of the 
indecomposable spectral categories are Archimedean groups. 

9.2. Example. Continuous categories. A spectral category is continuous if and 
only if K,( .i) has no atoms (as a partially ordered set), i.e. if and only if for every 
isolated point M of X[ /: 1, Ko( #FM) is not isomorphic to Z. In particular X[Dis( %)] 
is the closure of the set of all the isolated points M of X[ g] with KO( 5& = 22. 

9.3. Example. Spectral categories of type I, II, and III. Recall that any spectral 
category is the direct product of three categories of type I, II and III respec- 
tively [ 141. 

Since a spectral category is of type III if and only if it has no directly finite 
objects, it is clear that a spectral category %’ is of type III if and only if X0(S) = 0. 

By [7, Theorem 10.81 and by Theorem 7.5 a spectral category is of type II if and 
only if the stalks of J;(Y) are continuous groups (a totally ordered abelian group 
G is continuous if o(G) 2 IR for every real valuation o of G). Similarly, a spectral 
category is of type I ii’ and only if the set of all positive elements of K&FM) has a 
minimum for every stalk K,( .P&) of .&,(Y). 

It is possible to give a better description of the monoid +{ %‘/<c)/M} when ‘r5’ is a 
spectral category of type I or II. (When K is of type III +{ %%d,} = 0.) Denote by 
P the monoid of all non-negative integers if % is of type I or the monoid of all non- 
negative reals if ’ is of type II. Let P have the topology induced by the topology 
of the real numbers and let P* - - PU { 03) be the compactification of P with one 
point. For every open neighborhood U of M in X[ ‘G’] let PC be the monoid of all 
the continuous functions f: U-+P* such that the open set f-t(P) is dense in U and 
with the sum in PF defined by components. If c/1 c U2 there is a canonical mor- 
phism P,*: -+ PC, given by the restriction. Then ${ Wsn4} is isomorphic to the 
direct li.mit lim PC where c/ ranges in the filter of all the open neighborhoods of A4. 
This follows from [7, Theorem l&2]. 
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