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In this paper we reinterpret the main results about the spectral categoric: by
making use of the theory of sheaves and iniroducing the notion of ‘variety of
preadditive categories’. This approach allows us to visualize the structure of the
spectral categories better, to explain the different decompositions of a spectral
category (discrete and continuous part [4], type 1, 11 and III [14]) and to give an
incisive interpretation to the dimension theory for the objects of a spectral category
[7]. Moreover, we give an explicit description of the Grothendieck groups of the
dense subcategories of a spectral category.

Spectral categories, that is abelian categories with exact direct limits in which
every exact sequence splits, naturally arise in the study of injective modules (or,
more generally, in the study of the injective objects of any Grothendieck category)
and their Krull-Remak—Schmidt—Gabriel decompositions [12]. They were intro-
duced by Gabriel and Oberst [4], who discovered that any spectral category is the
product of a discrete spectral category and a continuous one. Later, on the lines of
Kaplansky’s theory of types for 4 W*-algebras [8], Roos [14] discovered that every
spectral category can be decomposed into a product of categories of three distinct
types (type I, II and III). Finally Goodearl and Boyle [7] constructed a complete and
beautiful dimension theory for the objects of a spectral category. The directly finite
case of that theory is partially based on ideas of Von Neumann and Loomis.

We study the spectral categories by means of the varieties of preadditive
categories (their definition is given in Section 1). Essentially a variety of preadditive
categories is for a preadditive category [12] what a ringed space is for a ring. Ringed
spaces have been extensively used by Dauns and Hofmann [1] and Pierce [11] in the
study of Von Neumann (bi)regular rings. Here we study the spectral categories by
means of varieties of categories. Given any abelian category ¢, we construct an
associated variety of preadditive categories having the spectrum ¥[#] of the Boolean
algebra of all idempotents of the center of ¢ as a basis and suitable quotient
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categories 7/, MeX[¢], of ¢ as stalks (Sections 3 and 4). Here ‘quotient
category’ means ‘quotient category in the sense of Gabriel’ [3].

Vice versa, given any variety of preadditive categories, we may construct its
category of global sections. If we limit our attention to the spectral categories, we
obtain a one-to-one correspondence (up to isomorphism) between spectral
categories and reduced spectral varieties of categories (Section 6). Here ‘reduced’
means a ‘variety having a Boolean space as a basis and indecomposable categories
as stalks’. We can thus begin our study of the variety associated to a spectral
category (Section 7). The stalk ¢/.v/), of this variety has a very simple structure and
it is possible to completely determine the class .5y, of all the isomorphism classes of
the objects of the stalk #/.,,. The class .#,, turns out to be totally ordered (in the
order induced by the relation ‘to be isomorphic to a subobject of’) and it is par-
titioned into a directly finite part and a purely infinite part. The directly finite part
of .7y is the positive cone of a totally ordered abelian group, and Goodearl and
Boyle’s finite dimensions d,, [7] are the real valuations of this group. Their infinite
dimensions u,, also are defined on the stalks ¢/.«/), of the associated variety.

We then turn to the study of the Grothendieck groups of the dense subcategories
(0. Serre subcategories) of a spectral category # {Section 8). These groups turn out
to be groups of global sections of sheaves which have X[¢] as a basis and totally
ordered abelian groups as stalks. These totally ordered abelian groups are convex
subgroups of the ordered group whose positive cone is the directly finite part of
a1

Finally, in the last section we study some examples by means of the associated
variety of categories. In particular we reinterpret Gabriel and Oberst’s decomposi-

tion into discrete and continuous part [4] and Roos’s decomposition into types
(141, [7].

1. Notation and definitions

We want to define a ‘sheaf of preadditive categories’ or, to be more precise, the
analogue for a preadditive category of what a ringed space is for a r' ag. The defini-
tion we give in this section avoids all set-theoretic problems.

A variery of preadditive categories (X, * ) consists of:

(a) a topological space X, called the basis of (X, 7);

(b) a class Ob(r ), whose elements are called objects of (X, 7 );

(¢) a sheaf of abelian groups .#om, (4, B) over X ror each ordered pair (A4, B)
of objects of (X, 1 );

{d) for each x€ X a preadditive category 7., called the stalk of (X, ¥ ) at x, such
that Ob( 7,)=0ob(7 ) and Hom, (A4, B)= .xom, (A, B), forallxe X, A, Be Ob(* ).

Before stating the axioms a variety of preadditive categories must satisfy, let us
recall that there are two formally different (but equivalent) definitions of a sheaf
of abelian groups. The one we shall make use of is due essentially to Leray: a sheaf
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% of abelian groups over X consists of a topological space ¥ and a local homeomor-
phism #:.¥—X such that n!(x)= %, is an abelian group for ali xe X and the
mappings induced by the operations are continuous (see [15]).

The composition functions on the stalks ¥, of a variety of preadditive categories
(X, v') are subject to two axioms:

(i) for each triple (A4, B, C) of objects of (X, » ), let ¥om, (A4, B)+ #om, (B,C)
denote the disjoint union |J,_,(#om . (A, B),x ¥om,(B,C),) considered as a
topological subspace of .¥om, (A, B) X #om,(B,C) endowed with the product
topology; then the mapping »om , (A, B) + #¥om , (B, C)—.om, (A, C} induced by
the composition functions on the stalks, (f,,&,)—&x° /s, is continuous;

(ii) for each Ae€Ob(7'), the mapping X — #om, (A, A), x—1,€ Hom, (A4, A)
is continuous, i.e. it is a global section of the sheaf of abelian groups .#om, (4, A).

An example of a variety of preadditive categories is given by the variety (X, 1)
over X with constant stalk . Here X is a topological space and ¢ is a preadditive
category [12]; set Ob(» )=0b(¥), ¥,=¢ for all xe X and let .#om, (A, B) be the
constant sheaf of abelian groups over X with stalk Hom,(A4, B) for all
A, BeOb(7).

If (X, ) is a variety of preadditive categories and A4, B are objects of (X, ), a
morphism o of A into B, denoted by o:A—B, is a global section
gel(X, ¥om, (A, B)). A morphism 6: A—B in a variety (X, v ) is an isomor-
phism if there exists 7: B—A such that roa=1,4 and ¢ ° 7= 15 (here the composi-
tion © is componentwise). A and B are then isomorphic objects in (X, ¥ ).

Recall that a Boolean space is a totally disconnected compact Hausdorff space
and a complete Boolean space is an extremally disconnected compact Hausdorff
space (i.e. the closure of any open set is open.) In the sequel we shall generally con-
sider varieties of preadditive categories over Boolean spaces. Boolean spaces have
the following property ( partition property [11, p. 12]): if X is a Boolean space and
{N,~| iel} is a covering of X by open sets, there exists a partition {M,, M,,..., M, }
of X, such that every element M; of the partition is a clopen subset of .X" contained
in N; for some ie! (depending on j).

1.1. Lemma. Let (X, v ) be a variety of preadditive categories. Suppose X is a
Boolean space. Then two objects A, B of (X, v ) are isomorphic in (X, v ) if and on-
ly if they are isomorphic in 1, for all xe X.

Proof. Suppose that A and B are isomorphic in ¢, for all xe X. Then for each
x€ X there exist sections ™, ¥ of .#om, (A, B), xom, (B, A) resp., defined in a
neighborhood of x, such that t¥(x) o g™ (x)=1, and W (x) o 7'9()=1zin v,. But
then tWog®=1, and a™ot™=1p in a neighborhood of x. By the partition
property it is possible to construct two global sections gel'(X, ¥om, (A, B)),
te (X, ¥om, (B, A)) such that toca=1,, 6°1=1p. Hence A and B are isomor-
phic in (X, 7 ). The converse is obvious. ]
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If A is an object of a variety of preadditive categories (X, »), we define the zero-
set 2(A) of A as the subset z(A) = {xc—‘XiA is a zero object in ¥} of X.

1.2. Lemma. Let (X, ¥ ) be a variety of preadditive categories and let A be an ob-
ject of (X, v ). Then z(A) is an open set in X. If X is Boolean, then z(A) is a clopen
set in X.

Proof. z(A) is the subset of X on which the two global sections 0 and 1 of
xom, (A, A) coincide. [

Finally, two varieties (X, 7 ), ()", v ') of preadditive categories are isomorphic if
there exist (i) a homeomorphism ¢: X-—X’, (ii) a one-to-one correspondence
@:0b(7 )—Ob(r ') and (iii) a homeomorphism @(A, B) for each ordered pair
(A, B) of objects of (X, 7 ), &(A, B): ¥om, (A, B)—fom , (P(A), P(B)), which
maps .¥om , (A, B), isomorphically onto .¥om , (®(A), P(B))y for all xe X and
induces a functor @,: 7, = 74, for all xe X.

2. Abelian varieties of categories

Let (X, » ) be a variety of preadditive categories and let Y be a subset of X. We
define the category of sections of (X, ¢ ) over Y, denoted by I'(Y, ¥), as the
category whose objects are the objects of (X, ¥ ) and whose morphisms are defined
as Homy. , ,(A, B)=TI(Y, #om, (A, B)) for every ordered pair of objects A4, B.
Thus the morphisms of 4 into B in I'(Y, 7 ) are the sections of .¥om, (A, B) over
Y. The category I'(Y, r ) is clearly a preadditive category. In particular I'(X, 7 ) is
the category of global sections of (X, 7 ). A variety of preadditive categories (X, 7 )
s an abelian variety of categories if I'(X, 7 ) is an abelian category. Note that the
morphisms of the category I'(X, 7 ) are exactly what we had defined to be the mor-
phisms of the variety (X, v ) in Section 1.

Recall that a dense subcategory ./ of an abelian category ¢ is a full subcategory
of ¢ such that for every exact sequence 02A—A—A4"—0in ¥, A is in .«&/ if and
only if both A" and A" are in ./[3]. If . is a dense subcategory of an abelian
category /, it is possible to construct the quotient category “/« (in the sense of
Gabriel) and /. turns out to be an abelian category. If (X, ¥ ) is an abelian variety
of categories and Y is a closed subset of X, let +/y be the full subcategory of
I'(X, 7 ) whose objects are all the objects 4 of (X, 7 ) with z(4) 2 Y. Clearly +/y is
a dense subcategory of I'(X, r ). Hence it is possible to construct the quotient
category I'(X, v )/.«/y. We denote the canonical functor (X, 7 )=I(X, ¥ )/«y by
Ty.

Now, we may define:’ a functor Ty:I(X, r )>I(Y, 7) in the following way:
Ty(A)=Aforall 4 e Ob/L(X, v ))and if fe Hompx , (A, BY=T(X, #om, (A, B)),
Ty(f)e Hom . , (A4, BY=T(Y, »om, (A4, B)) is the restriction of the global sec-
tion f to the closed subset Y of X.
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2.1. Proposition. Suppose that X is a Boolean space. Then there exists a unique
Junctor Fy:I(X, v)/s/y=I(Y, ) such that FyTy=Ty. Moreover Fy is an
isomorphism of categories. In particular I'(Y, v') is an abelian category Sfor all
closed subsets Y of X.

Proof. Recall that I'(X, ¥')/«y is defined as the category whose objects are the
objects of I'(X, ¥') and whose morphisms are defined by

Homyx,  )/4,(A, B)=lim Hompy, (A, B/B’)

where A’ ranges in the set of the subobjects of A in I'(X, ¥) such that A/A4’ € «/y and
B’ ranges in the set of the subobjects B’ of B in I'(X, 7') such that B’e «/y. Since
Y is a closed subset of X, the restriction I'(X, #¥om , (A, B))—I'(Y, #om, (A, B)) is
a surjective homomorphism whose kernel consists of all the global sections of
K#om , (A, B) which have zero restriction to Y ({11, Lemma 3.3]). Hence we only
have to prove that the canonical homomorphism

Hompy , (4, B)—*li_r'n Hompy ,(A’, B/B’) 1)

is surjective and that its kernel consists of all the elements fe Homy , (4, B) =
I'(X, ¥om , (A, B)) whose restriction to Y is the zero section.

Let fe Hompx, 4 (A, B). Then f is in the kernel of the canonical morphism if
and only if there exist 4’, B’ subobjects of A, Bin (X, ¥ ) with A/A’, B’€ »y such
that if i+ 4’=A and p: B—B/B’ are the injection and the projection in I'(X, ¥ ),
then pc,oi=0. But if A/A’, B'€ &/y, then i(y): A’ A and p(y):B—B/B’ are
isomorphisms in 7, for all yeY, so that pofoi=0 implies f(»)=0, i.e. the
restriction of f to Y is the zero section. Conversely if the restriction of fto Y is
the zero section and if i : A’ — A is the kernel of fin I'(X, #') then it is easy to check
that i(x): A’ —A is the kernel of f(x) in ¥, for all xe X. Hence i(y) is an isomor-
phism for all ye Y so that A/A4’, the targat of the cokernel of i : A=A’ in (X, ¥),
is a zero object in ¥, for all ye Y. Hence A/A’€ «/y. But then it is clear that f is
in the kerne! of the canonical morphism (1). We have thus proved that the kernel
of the canonical morphism (1) consists of all the global sections of .#om, (A, B)
whose restriction to Y is zero. Let us now prove that the canonical morphism (1)
is surjective.

Let A4’, B’ be subobjects of A4,B resp. in I'(X, 7). Suppose that A/A’ and
B’ are in /y. Then the inclusion A'—A and the projection B—B/B’ are
morphisms in I(X, ¥), i.e. global sections, and their multiplication induces
a sheaf morphism #om, (A, B)— #om,(A’,B/B’). If xez(A/A’)Nz(B’) this
sheaf morphism induces a group isomorphism between the two stalks over
x. Hence the sheaf morphism som, (A, B)— #om, (A’, B/B’) induces a group
isomorphism I(Y, #om, (A, B))~I(Y, #om,(A’, B/B’)). By composing with
the restriction I'(X, #¥om, (A, B))—I(Y, #¥om,{A, B)) we get an epimorphism
X, #om, (A, B))~I(Y, #¥om, (A, 5/8'). Hence for every element f of
Homp, , (A, B/B’) there exists an element g of Hompx, , (A4, B) such that f and
g have the scme restriction to Y. Therefore (1) is surjective. [
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2.2. Corollary. If (X, v ) is an abelian variety of categories and its basis X is a
Boolean space, then ¥, is an abelian category for all xe X. U

Let us conclude this section with another definition. An abelian variety (X, » )
of categories is said to be a spectral variety if the category I'(X, ¥) is a spectral
category [4], i.e. an abelian category with exact direct limits and a generator in
which every exact sequence splits.

3. The decomposition space of a preadditive category

In Section 4 we shall associate a variety of preadditive categories to each abelian
category. We need a topological space, which will serve as a basis for the associated
variety of preadditive catezories. Our aim in this section is to construct that
topological space.

Recall that the center Z[+ ] of a preadditive category % is the ring of all functorial
morphisms of the identity functor of # into itself [12]. It is a commutative ring; an
element u of Z[+ ] consists of a morphism u4: A—A for every object A of # such
that fu,=ugf for all morphisms f: A—B in ¢. Consider the Boolean algebra
B[] of all idempotent elemants of Z[7]: if u,ve B[#], their sum in B[%] cor-
responds to the endomorphism u,4+v,—u,v,4 of A for every object A of ¢, and
their product corresponds to the endomorphism u4v,4. The decomposition space
X[+ ] of ¢ is the topological space Spec B[#] with the Zariski topoiogy. It is a
Boolean space and the sets X[7],={Me X[%]IueM}, ue B[], are the clopen
sets in X[/ ] and form a basis of open sets for the topology of X[#]. If ¢ is a
Grothendieck category and U is a generator of 7, the center Z[7] of ¢ and the
center of the ring Hom, (U, U) are isomorphic [10], so that the decomposition
space X[#] of 7 is homeomorphic to the decomposition space of the ring
Hom, (U, U) [11, p. 8].

A category ¢ is a null caregory if every object of % is a zero object. A preadditive
category ¢ is indecomposable if it is not a null category and for all preadditive
categories 7, ¢, with 7| X ¢, equivalent to #, either ¢, or ¢, is a null category.
Note that if +,, ¢, are preadditive categories, Z[7 X ¥,] is canonically isomorphic
to Z{r}xZ[.], so that X[#, X #,] is the disjoint union of two clopen subsets
canonically homeomorphic to X[7,] and X[#,] respectively. Also note that
equit 3lent categories have isomorphic centers and homeomorphic decomposition
spaces. It is nou difficult to check that a preadditive category ¢ is indecomposable
if and only if B[+ ]= {u, 1}, i.e. if and only if X[#] has a unique point.

Let us conclude this section by relating the decomposition space to the spectrum
of a Grothendieck category.

Recall that if 7 is a Grothendieck category, the spectrum Sp(#’) of # is the set
of all types of injective indecomposable objects [3]. If 7 is spectral, Sp(¥') is then
the set of all isomorphism classes of simple objects. In this case if Dis(#') is the full
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subcategory of # generated by all objects of ¥ which are direct sums of simple
objects and Cont(%) is the full subcategory of ¢ generated by all thz objects of ¢
which have no simple subobjects, then # is equivalent to Dis(%)x Cont(:) [4].

3.1. Lemma. Let ¢ be a spectral category. Then there is a canonical injection of
Sp(¥) into X[%]. The image of every element of Sp(%¥) is an isolated point of X[ %],
and the closure of the image of Sp(%) in X[€] is homeomorphic to X[Dis(¢)] and
is the Stone—Cech compactification of the image.

Proof. Let U be a generator of #. Then there is a one-to-one correspondence
between Sp(%¢) and the sct of isomorphism classes of simple subobjects of U.
Moreover U is isomorphic to the direct sum (®,csv) UD® Uzon, Where for every
ieSp(¥), U, is a direct sum of simple objects of type i/ and U_,, has no simple sub-
modules. Note that the U;’s and U, are fully invariant in U. Thus

End, (@)=( T End,(U)) xEnd, (Uon),
so that e

Br1=( 11 B(End, (U)) ) BENd, (Uon).
ieSp(¢)

Now B(End,U;))={0,1} for all ieSp(¥’). Therefore X[#] is homeomorphic to
¥[Dis(#)]U %[Cont(#)] and X[Dis(%¥)] is the spectrum of the ring {0, 1}57“" i.e. it
is the Stone—Cech compactification of Sp(¥) with the discrete topology. [

4. The variety of preadditive categories associated to an abelian category

In the previous section we have associated the Boolean algebra B[#%] and its spec-
trum ¥[¢] to the preadditive category ¢. Now suppose that # is abelian, and fix
a maximal ideal M of B[¢], i.e. a point M of ¥[#]. Consider the full subcategory
o)y of ¢ whose objects are the objects A of ¢ such that u, =0 for some ue B[?],
ué¢ M. Let us show that &/, is a dense subcategory of ¢.

4.1. Lemma. If % is an abelian category and M is a maximal ideal in B[%], &/, is
a dense subcategory of ¢.

Proof. For every exact sequence 0—A4’'>A—A"—0 in ¥, the diagram

0 > A’ + A - A" » 0
uy Uy Uy (2)
0 » A’ > A - > A” >0

is commutative. Hence if A4 is in .«/); and u, =0, then u, =0 and u4-=0, so that
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A’and A" are in .v/y,. Conversely if A’ and A” are in &), and u',u” € B[¢]\ M with
uy =0, uy-=0, then u=u'u"e B[¢]\M and u, =0, u,-=0. The commutativity of
(2) gives u4=0, i.e. Ae.vy. U

Since ./, is a dense subcategory of %, we may construct the quotient category
¢/ [3]: the objects of ¢/« are the objects of ¢ and if A4, B are objects of

‘/':/.W Homﬁ/_i“(A, B)= ll_l'Il Hom, (A4, B/B’),

where A’ ranges in the set of the subobjects of 4 such that A/A'€ «/y; and B’
ranges in the set of the subobjects of B such that B’ € «/),. The category %/« is
an abelian category [3, Prop. III.1.1]. We shall denote the canonical functor
v 7 /:/yy by Ty, it maps the object A of % into the object A of ¢/.«), and the
morphism fe Hom, (A, B) into its canonical image

Ty(f) elim Hom, (4’, B/.s')=Hom, (A, B).

Our next proposition gives another description of the groups of morphisms in
e

4.2. Proposition. Let 7 be an abelian category, Z[*%] be its center and B{%] be the
Boolean algebra of all idempotents of Z[¢]. Let A, B be objects of ¢. Then
Hom, (A, B) has a natural structure of Z[#)-module. If M is a maximal ideal in
Bl/} and Ty(A, B):Hom, (4, B)~Hom,,,, (A, B) is the group homomorphism
induced by the functor Ty, then Ty(A,B) is surjective and its kernel is
MHom, (A4, B). Hence Hom,, ,, (A, B) is caironically isomorphic to Hom, (A4, B)/
MHom, (A, B).

(Recaii that if R is a ring, B(R) is the Boolean algebra of aii central idempotents
of R, M is a maximal ideal of B(R) and C is an R-module, then
MC={ex|ee M, xeC}. It is an R-submodule of C [11, p. 7].)

Proof. If ueZ[s] and feHom,(A4, B), define their product as uf=ugzf. It
1s clear that in this way Hom, (4, B) becomes a Z[#]-module. Let us prove that
T\n A, B): Hom, (4, B)~Hom, ,,, (4, B) is surjective. Let A be an element of
Hom, | (A, B). Then A is the image of an element #eHom, (4’ B/B’), where
A, B’ are subobjects of A,B resp. with 4/4’ and B’ in .v,,. There exist
u,v€ Bl# |\ M such that u, ,.=0and vy =0. Since u,: A—A is idempotent, there
cxist a subobject A” of A and an epimorphism p: A—A” such that if i : A" > A is
the inclusion then ip=u,4 and pi=1,. [12, ex. 2.1.5]. Similarly there exist a sub-
object B” of B and a monomorphism j : B/B”— B such that if g: B—B/B" is the
projection then jg=vgand gj=1p,5-. Let r: A—A/A’ be the canonical projection;
thenru =uy 4r=0,ie. A"=imu, <kerr=A’'[12, p. 34]. Similarly let k: B'—B
be the inclusion; then vgk=4kvg =0, i.e. B'=imk<kervg=RB". Finally let
i':A"=A and i": A"~ A’ be the inclusions and q': B—~B/B’, q": B/B’—B/B" be
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the canonical projections, so that i=i'i", g=q"q’. We shall prove that T),(4, B)
is surjective by showing that T,,(A, B)(jq"hi"p)=~h, i.e. by showing that the
image of jq"hi"peHom(A4, B) in Hom,, (A4, B) is equal to the image of
heHomg(A', B/B’) in Homg,,, (A, B). Now if t: A—+A/A”" is the canonical pro-
jection, i.e. ¢ is the cokernel of i: A”—A, then u,, 4+t =tu,=1tip=0 and therefore
u4,4-=0 (¢ is an epimorphism). Hence A/A” is in &),. Similarly B” is in /).
Hence it is sufficient to prove that the image q(jq”hi"p)i of jq"hi"p € Hom(A4, B)
into Homy(A", B/B”) is equal to the image q”"hi” of heHom.(A’, B/B’) into
Hom (A", B/B"). By computing: q(jq"hi"p)i=(qj)q"hi"(pi)=15,5q"hi"14.=
q"hi". This shows that T,(A, B) is surjective. Let us determine its kernel. Let
SeHom,(C,, C,). Then Ty,(A, B)(f)=0 if and only if im f is in .&/y,[3], i.e. if and
only if there exists ueB[¢], uéM, such that ugf=0. Now if ugf=0 with
ueB[%], u¢ M, then f=(1-u)fe MHom,(A, B). Conversely if fe MHom(4, B),
then f=ugg with ueM and geHomy (A, B), so that 1-u¢M and (1-u)f=
(1 —u)gugg=0. Hence MHom (A, B) is the kernel of T),(A4, B). [

Let us fix two objects 4 and B of an abelian category ¢. Then it is possible
to associate a sheaf of abelian groups over X[C] to the Z[#]-module Hom,(A, B)
(see Pierce [11, p. 18]). If MeX[%], the stalk over M of the sheaf asscci-
ated to Hom,(A4, B) is simply Hom, (A4, B)/MHom, (A, B). But in our case
Hom (A, B)/MHom(A, B) is canonically isomorphic to Homy,, (4, B). Via
these canonical isomorphisms it is possible to give the following description of the
sheaf over X[¥¢] associated to Hom,(A4, B) (we shall denote this sheaf by
xom (A, B)): for Me X[¥], set

sHom (A, B)yy=Homy,,, (A, B)
and

SfomyzA,B)= | Homy(A, B)y.

MeX[¢}

Let 7 : #om (A, B)— X[ €] be given by n (M) = #om (A, B)y. Let Ty : € = €//y,
be the canonical functor and let Ty,(A, B): Hom,(4, B)—»Hom,,, (A, B) be the
induced group homomorphism. For fe Hom(4, B) and M € X[¢] set 7,(A, B)}(M)=
Ty(A, B)(f) so that t{A4,B) is a mapping X[¢]—om.(A, B). Topologize
som (A, B) by taking all sets 7,(A4, B)(X[¢],), with fe Hom(A, B), ee B[¢], as a
basis for the open sets. In this way we have constructed a sheaf of abelian groups
#omz(A, B) over X[¢] [11] for each ordered pair (A4, B) of objects of €.

4.3. Theorem. If ¢ is an abelian category, the topological space X[%], the class
Ob(%)=0b(¥), the sheaves of abelian groups #om (A, B) (A, Be Ob(%)) and the
categories ¢/s5/yy (M€ X[€]) form a variety of preadditive categories.

Proof. We must show that if A,B,C are objects of ¢, the mapping
c: . #om;(A, B)+ #om, (B, C)— #¥om;(A,C) defined by

ATy (A, B)(S), Ty(B.C)g)) = T(A, C)(g° f)
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for Me X[¢], fe Hom (A, B), g€ Hom(B, C) is continuous. Let us fix Mye X[¢],
foeHom, (A, B), go€ Hom (B, C) and an open set 1,,(4, CXX[¢],) of #om (A, C)
containing

(T, (A, BY(S0), Tag (B, C)(80)) = Tis,(A, C)(8o ° fo)s

with hye Hom(A,C), eeB[#%]. Since Ty, (A, C)(go°fo) € 14 (A4, C)X[€],) we
have that TT‘WO(A’ C)(go OfO) = thO(A’ C)(MO), ie. TMO(A, C)(gO ofO) = TMo(Ar C)(hO)
By Proposition 4.2 it follows that gy f, — hge MyHom (A, C), i.e. g°fo—ho=
ugly for some uge My, {pe Hom,(A4,C). Now 14,(A, B) (X[ e -4, is a neighbor-
hood of Ty,(A4, B)fp) in .¥om(A, B), and t,(A4, B)(X[%]e -4,)) IS a neighbor-
hood of T, (A, B)(g,) in #¥om,(B,C) and it easy to verify that

cl(zy, (A, BYX[ 1oy - upp) X T (A BYE[ 1o - up))) N (#Om (A, B) + #om (B, C))]
C 74 (A4, O)X[* L)

This proves that ¢ is continuous.
Moreover, accordingto [11], for each 4 € Ob(¢ ) the mapping X[#']—.#¥om ;(A, A),
M~ Ty (A, A)(1,), is continuous. [J

Thus we have associated a variety of preadditive categories (¥[¢], ¢) to every
abelian category 7.

Let us conclude this section with a corollary which will be useful in the sequel.

4.4. Corollary. Let A, B be objects of an abelian category ¢. Then the set
{MeX[+ ]| A and B are isomorphic objects of ¢/} is an open set in ¥[#].

Proof. Let S be the set in question. If MeS, by Propositior: 4.2 there exists
J€Hom, (A, B) such that Ty,(A, B)(f)e Hom,,,, (A, B) is an isomorphism. By [3]
the objects ker f and coker f of ¥ are in %/, i.e. they are zero objects in ¢/./y,.
Thus M e z(ker f)Nz(coker f)CS. By Theorem 4.3 and Lemma 1.2 z(ker /)N
Z(coker f) is open in X[¢]. Hence S is an open set. [

5. Reduced varieties of preadditive categories

In Section 4 we assoc:ated a variety of preadditive categories (¥[# ], ¥) to every
abelian category +. The stalks of (X[* ], %) were the quotient categories /.,
M e X[+ ]. Our aim is to study spectral categories [4], i.e. Grothendieck categories
in which every exact sequence splits, and in Section 7 we shall study the categories

¢ /vy, With 7 spectral, in detail. For the time being we only need the following
result.

5.1. Lemma. Assume that ¢ is a spectral category and M is a point of ¥[¢]. If A, B
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are objects of ¢, then in €/« either A is isomorphic to a subobject of B or B is
isomorphic to a subobject of A.

Proof. By [7, Theorem 1.14] we may suppose that ¢ is the category of all i:on-
singular injective right modules over a regular right self-injective ring R. By
[7, Theorem 3.3] there exists a central idempotent e€ R such that Ae<Be and
B(1 —e)s A(1 — e). Without loss of generality we may suppose that M is a maximal
ideal of the Boolean algebra of all central idempotents of R. Then either ee M or
(1-e)e M. If ee M then the two objects A and A(1 - e) of ¢/, are isomorphic.
Similarly for B and B(1 —e). Thus B is isomorphic to a subobject of A in #//y,.
On the other hand, if (1 —e)eM, A is isomorphic to a subobject of B. [

5.2. Corollary. If ¢ if a spectral category and M is a point of X[¥], then ¢/ is
an indecomposable category.

Proof. Every decomposable category ¢ contains two non-zero objects A4, B with
Hom,(A4,B)=0. [

We szy that a variety of preadditive categories (X, ¥) is a reduced variety if X
is a Boclean space and 7, is an indecomposable category for all xe X.

5.3. Corollary. If ¢ is a spectral category, the variety of preadditive categories
(X[¢), ©) associated to ¢ is a reduced variety. []

Note that if ¢ is a spectral category, the categories %/.%/y;, M € X[¢], are abelian
categories in which every exact sequence splits [3; Cor. III.1.1], but they are not
necessarily spectral categories (see Example 9.1).

6. The isomorphism theorems

The object of this section is to prove that for spectral categories and reduced spec-
tral varieties of preadditive categories the correspondences ¢~ (¥[¢], ¢) and
(X, * )~ TI(X, *) are inverses of each other up to isomorphism.

6.1. Theorem. Let ¢ be an abelian category, let (X[¢], ¢) be the variety of pre-
additive categories associated to %, and let [(X[¥], €) be the category of global sec-
tions of (X[%, ). Then ¢ is canonically isomorphic to I'(X[¢], %).

Proof. Let us define a canonical functor I: ¢ = I'(¥[#¢], ) in the following way: if
A is an object of %, set I(A)=A and if f:A—B is a morphism in ¢ let
I(f)e(X[#], #om (A, B)) be the global section of the sheaf #om,(A, B) over
¥[#1, for which I(f)(M) is the image of fe Hom,(A, B) into Hom,,,, (A, B).
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I is clearly a functor and induces a bijection between the classes Ob(¥¢) and
Ob(I'(X{# ], €)). In order to prove that I is an isomorphism of categories we have
to show that it induces a group isomorphism Hom (A, B)—I'(X[¢]), ¥om;(A, B))
for all A, Be Ob(%). But this is exactly the isomorphism of Z[#]-modules of [11,
Theorem 4.5] (see Proposition 4.2). [

6.2. Corollary. If ¢ is an abelian (resp. spectral) category, then (X[¢],¢) is an
abelian (resp. spectral) variety of categories. [J]

6.3. Theorem. Let (X, v ) be a reduced variety of preadditive categories. If x € X,
the set M,={ueB[l(X, 1)] | u,(x)=0 for aii AeOb(7)} is a maximal ideal of
BII(X, 7 )] and the mapping ¢ : X 2> X[[ (X, ¢ )], ¢(x)=M,, is a homeomorihism.

Proof. Consider the ring morphism B[/ (X, ¢ )] B[ »,] such that u - u,(x) for
every object A. It is surjective and B[7,]={0,1} because ¢, is indecomposable.
Since M, is its kernel, M, is a maximal ideal of B[I'(X, » )].

Let x, y be two distinct points of X. Since X is Boolean, there exists a clopen set
Y of X with x¢Y and yeY. If AeOb(r) define uye Hompy , (4, A)=
X, »om, (A, A)) by u,()=1,4 if teY, and u,{t)=0, if teX\Y. Then
ueBIIX, )], ux)=0 and u(y)#0. Thus M,#M, and the mapping ¢ is
injective. '

A basis for the open sets of X[/ (X, ¥ )] is given by the sets

X, ={MeXIlX, 1)]|ee M},
ee B[I'(X, )}, and
¢ 'X)={xeX|ee¢M,}={xeX|e(x)*0}

U {xex|esx)#0}.

AeOb(r)

But since 1, is an indecomposable category, either e4(x)=0,4 or e, (x)=1,. Hence

o '%)= U {reX|e,n)=1,).
AeOb(r)
Bt {xe X|e (x)=1,} is the set on which the two global sections 1, and e4 of
I'(X, om, (A, A)) coincide and it is open. Hence ¢ '(¥,) is open and ¢ is con-
tinuous. Note that if X,#0, i.e. if e#0, then there exists xe X with e(x)#0. But
e(x)e B[ 1,]={0,1}. Hence e(x)=1 and e¢ M,. Thus ¢(X)N¥%,#0 and the image
of the continuous injection ¢ is dense in ¥[I(X, 7 )]. Since X is compact and
X[I'(X, v )] is Hausdorff, ¢ is a homeomorphism. O

Remark. By Theorem 6.3 and by [7, Prop. 4.1] if (X, 7 ) is a reduced spectral
variety of categories, then X is a complete Boolean space.

6.4. Theorem. Let (X, v ) be a reduced abelian variety of categories and let
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(XIT(X, ¥)], T(X, V) be the abelian variety of categories associated to the abelian
category I'(X, ¥'). Then the varieties (X, ¥) and (X{I'(X, ¥)),I'(X, ¥)) are canoni-
cally isomorphic.

Proof. Let ¢: X —=X[I'(X, ¥)] be the homeomorphism defined in Theorem 6.3
and @:0b(¥ )—Ob(I'(X, ¥)) be the identity mapping. We have to define a
homeomorphism @(A4, B) for each ordered pair (4, B) of objects of (X, 7),
P(A, B): #om , (A, B)— #Xomx (A, B), which maps #om , (A, B), isomorphic-
ally onto #ompx+y(A, B)yy for all xeX and induces a functor @,: s,
(X, v')/ oy, for all xe X, where &/, is the full subcategory of I'(X, ') whose
objects are the objects A of I'(X, ¥) such that u,=0 for some ue B[[(X, )],
ug¢ M,. Note that if ue B[I'(X, ¥')], then u¢ M. .f and only if u(x)#0. But (X, *)
is reduced and u(x) € B[ 7,], so that either #(x) =1 or u(x)=0. Therefore an object
A of I'(X, 7 ) is in &/, if and only if u,=0 for some u e B[I'(X, r)] with u(x)=1.
By Lemma 1.2 it easily follows that the objects of .2/, are exactly the zero objects
of v,. Let

P(A, B): #¥om , (A, B), »Homp(x, y )/, (4, B)
=I(X, #om, (A, B))/M,I'(X, ¥om, (A4, B))

be the canonical isomorphisimn of [11, Lemma 5.2(c)]. Then &(A, B) has the required
properties. [

We have thus proved our main theorem:

6.5. Theorem. If we associate the reduced spectral variety of categories (¥[€¢}, ¢)
to the spectral category ¢ and the spectral category I'(X, *') to the reduced spectral
variety of categories (X, ¥'), we get a one-to-one correspondence between the
isomorphism classes of reduced spectral varieties of categories and the isomorphism
classes of spectral categories. []

Now that we have proved Theorem 6.5 we may begin our study of spectral
categories. We shall investigate the properties of spectral categories by analyzing the
structure of the associated reduced spectral variety of categories.

7. The stalks of the variety associated to a spectral category

In Section 4 we have associated an abelian variety of categories (X¥[¢], €) to every
abelian category #. The stalks of (¥[%], ¢) are the quotient categories ¢/#/y,
MeX[¢]. In this section we study the categories %/, MeX[¢], when ¢ is a
spectral category. We shall make use of the results of [7]. We are primarily
interested in the class of all the isomorphism classes of objects of €/.«/y,.
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In this section ¢ denotes a spectral category. If M is a point of X[¥¢], we shall
denote by 7{ ¢/} the class of the isomorphism classes of #/«),. If A is an ob-
ject of 7 /.y, [A] will denote the class of all the objects isomorphic to A in ¢/«/y,.
Thus #{ ¢/} is the class whose elements are the classes [4], where A ranges in
Ob(¢ /). By (3, Prop. 1I1.1.1] ¢/«/y is an abelian category and by [3, Cor.
111.1.1] every exact sequence in %/.4/,, splits. Thus in S{%/«),} we may define a
composition law + by [4]+ [B]=[A@®B] and a relation < by setting [4] <[B] if
A is isomorphic to a subobject of B in ¢/+/,,. The composition law + and the rela-
tion < have the following properties:

(i) + is associative and commutative;
(ii) if O is a zero object in /%y, then [0] + [4] = [A4] for every [A] € #{ ¢/ \};

(iii) for every [Al,[Ble.#{?%/+y}, [A]=<[B] if and only if there exists
[Cle.7{r/v)} with [A]+[C]=[B];

{iv) =< is reflexive and transitive;
(v) =< is antisymmetric: if [A],[B]e f{¥/+y}, [A]<[B] and [B]=<[A], then
[A]l=B];

(vi) if [A),[Ble.s{¢/+y}, cither [A]<[B] or [B]<[A];

{vii) if [A),IB),[Cle.7{#/+y} and [Aj<[B], then [A] +[C]=<[B]+I[C].

The proof of (i)—(iv) is trivial and {vi) follows from Lemma 5.1. Let us prove (v).
If [A)<[B] and [B] < [A], by (iii) there exist C and C' withA®C=Band B®C'=A
(= in 7/4/y). Let f, f' be elements of Hom,(A®C, B), Hom (B@®C’, A) resp.
such that Ty (f) and Ty, (f’) are isomorphisms. Then there exist u,u’e B[¢]\M
such that / and f” induce isomorphisms u,4gc(A®C)—up(B), ugec(BAC')—
u;y(A). But then wu,u,(A) is isomorphic to a subobject of ugup(B) in ¢ and
similarly ugug(B) is isomorphic to a subobject of u,4u(A4). By Bumby’s Theorem
{7. Theorem 1.2], (Schroeder—Bernstein theorem for the injective modules),
u 41 ,(A) and ugug(B) are isomorphic in . Then [4] = [u u;(A)] = [ugup(B)} = [B]
in .7{ /,/.Zylu}. T

If A is an object of an abelian category, A is purely infinite if A@ A=A, and
A is directly finite if the zero subobject is the unique purely infinite subobject of
A. Note that an object is purely infinite and directly finite at the same time if and
only if it is a zero object.

1.1. Lemma. If ¢ is a spectral category, every object in ¢/« is either directly
finite or purely infinite.

Proof. We have to prove that if an object contains a non-zero purely infinite sub-
object then the object itself is purely infinite. Let 4 be an object of ¢/./y, and sup-
pose that A contains a non-zero purely infinite subobject B. Then there exists
ue B[+ ]\M such that u,(A) contains ug(B) as a subobject in ¢ and ug(B) is a
non-zero object in 7. Furthermore since B= B@®B in #/.4/,; we may suppose that
uy(B) and ugy(B)® up(B) are isomorphic in %. Therefore ug(B) is purely infinite in
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¢. By [7, Prop. 7.4 and Cor. 7.7], there exist orthogonal idempotents u’, u” of B[¢']
such that u’+u"=1, uy(A)@uy(A)=A, u,(A) is purely infinite in ¢ and u4(A) is
directly finite in ¢. Now ugup(B) is purely infinite and is contained in u;(4) which
is directly finite. Hence ugug(B) is a zero object in #. Since B is a non-zero object
in €/s/y, it follows that uu”e M, so that u” € M and therefore u’¢ M. Hence A is
isomorphic to u,(A4) in #/a. It follows that A4 is purely infinite in /sy, O

By Lemma 7.1, the direct sum in ¢/, of a directly finite object and a non-zero
purely infinite object is purely infinite. It is clear that the sum of two purely infinite
objects is purely infinite. By [7, Theorem 3.6] and by the next lemma, the sum of
two directly finite objects is directly finite.

1.2. Lemma. Every directly finite object of ©/s/y is of the form Ty (A) for a
directly finite object A of €. Every purely infinite object of ¢/, is of the form
T\/(A) for a purely infinite object A of ¢.

Proof. Any object of ¥/« is of the form T),,(B) for some object B of . By [7,
Theorem 7.4 and Cor. 7.7] there exist u,u’€ B[¢'] with ug(B) directly finite in ¥,
ug(B) purely infinite in ¢ and w+u’=1. Hence either ueB[¢]\M or
u'e B[#]1\M, so that either ugz(B) or ug(B) is isomorphic to B in %/s/,,. Hence
every object of ¢/« is of the form Ty,(A), where A is either directly finite or
purely infinite in ¢. If A is purely infinite in ¢, T),(A) is purely infinite in ¢/.&/,.
Suppose that A is directly finite in ¢; if ue B[¢']\M and u4(A) is purely infinite
in ¢, then 1#,4(A)=0. From this and from Lemma 7.1 it easily follows that 7j,(A4)
is directly finite. [

7.3. Proposition. If A is a directly finite object and B is a non-zero purely infinite
object in €/s/y;, then [A]+[B]=[B] in ${¢/\}.

Proof. If [B]<[A], then [B]=0 (because A is directly finite and B is purely in-
finite), contradiction. Hence [A]<[B] and [B]<[A]+[Bl=<[B]+[B]=[B]. U

We may now give a first description of (#{ %/}, +, <). The class .#{%/«/y} is
the disjoint union of 1wo classes, the class /4{%/.¢/)/} consisting of all the isomor-
phism classes of directly finite"shiscts of ¢/./s; and the class #{ €/} consisting
of the isomorphism classes of all non-zcs6 purely infinite objects of #/«),. Any
element of J;{%¢/o/p} is < than any element of f@{%/ﬁM}. Furthermore
I { %/} and S,{¢/«/)s} are both closed with respect to ihe operation +, and if
[Al e #p{%/ap} and [Bl € S {%/s/ps} then [A] + [B]=[B]. Therefore in order to
study the behavior of #{¢/«/,} with respect to + and =, it is clear that we only
have to study the behavior of J;{%/«)} and S {%/o/\} separately.

Let us begin with 4, {¢/s/}. It is clear that #;{%/a/y} is a set. Furthermore if
A, B, C are directly finite objects of ¥ and A@C=B®C then A=B [7, Theorem
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3.8]. It foiiows from Lemma 7.2 that (/,{ #/.&/p}, +) is a commutative monoid with
the cancellation property which is totally ordered in its natural order [2, Cor. X.6].
It follows that (#/{7/v},+) may be embedded as the positive cone of a totally
ordered abelian group G. By Hahn’s Embedding Theorem (2, Theorem IV.16}, G
is isomorphic to an ordered subgroup of a lexicographic product L of copies of the
group of the real numbers R. The lexicographic product L is constructed over the
set { (g)‘!geG, g>0} of all non-zero principal convex subgroups of G inversely
ordered (here if #e G, (h)* denote the convex subgroup generated by A.) Thus L
is a subgroup of [],..cR. In order to study the embedding of G into

LcTl,-.cR we may compose this embedding with the canonical projections

My:ll o< R™R, heG, h>0. The maps we obtain in this way are group
homomorphisms @,.: G—=R constructed by extending the ordered homomor-
phisms (h)*—R, defined by mapping 4 into 1. Unfortunately the mappings ¢+
are not ordered morphisms and are not uniquely determined on the elements of G
which do not belong to (h)*. We may avoid these ambiguities by giving the follow-
ing definition.

Let G be a totally ordered abelian group. A real valuation of G is a mapping
v:G—RU{oo} such that (i) there exists an element e G, h>0, with v(h)=1, (ii)
for all ge G, v(g) = if and only if g does not belong to the convex subgroup of
G generaied by h; (iii) the restriction of v to the convex subgroup of G generated
by A is a homomorphism of ordered groups.

Note that Hahn’s Embedding Theorem has naturally let us to this definition of
real valuation. Clearly any real valuation of G is uniquely determined by an element
h>0 of G. We shall call the real valuation of G corresponding to ke G, h>0, the
real valuation of G centred in h, and we shall denote it by v,.

Let us go back to the commutative monoid .#,{%/%/}. Recall that if ¢ is a spec-
tral category, Goodearl and Boyle [7] have defined the relative dimension
G34(A:C) of A with respect to C in M (here A,BeOb(¢), MeX[%]), in the
following way: if ee B[7 ], d,(A: C) is the infimum of all rational numbers m/n
such that m,n>0 and e4(A)" is isomorphic to a subobject of e~(C)™ (if no such
m/n exist, then d,(4:C)= o) and dy,(4: C)=inf{d,(4:C)|ec B[¢1\M}.

7.4. Theorem. Let ¢ be a spectral category, MeX[¥]. Let G be a totally ordered
abelian group containing 9:{¢/«/y} as a positive cone. Then for all directly finite
objects A,C of +/+4y, if C#0, then vic)([A]) =dy(A:C).

Proof. We have that dy(A:C)=o if and only if d,(4:C)=o for all
ee B[/ ]\ M, i.e. if and only if e4(A) is not isomorphic to a subobject of e-(C)"
for all n=0 and for all e. This happens if and only if [4] £#[C] in F{ €/} for
all n, i.e. [A} does not belong to the convex subgroup of G generated by [C]. But
this is equivalent to vy ([4]) = . Since dy,(C: C)=1 |7, Prop. 10.1(c)}, it remains
to prove that dy, (- :C) extends (uniquely) to a homomorphism from the convex
subgroup of G generated by [C] into R. This ‘ollows from [7, Theorem 9.5]. O



Spectral categories and varieties of preadditive categories 235

We shall return to the study of /,{#//} later (Section 8). Let us pass now to
So{ €/}, i.e. to the non-zero purely infinite objects of ¢/«y,. The analogue of
the dimensions d), for the purely infinite objects of ¢ are the dimensions y,, defin-
ed by Goodearl and Boyle [7]:

Let ¢ be a spectral category, let MeX[#] and let 4 be an object of €. If e, =0
for some ee B[#¥]\M, define up(A4)=0. If e,#0 for all ee B[¢]\ M, define
Um(A) to be the smallest infinite cardinal & such that for some ee B[¢]\ M, e, (A)
does not contain a direct sum of & non-zero pairwise isomorphic subobjects [6,
Chap. 12].

It is immediately possible to reinterpret Prop. 12.2 and 12.4 of [6]: up,(4) =0 if
and only if Tj,(A) is a zero object in /%y, up(A)= R, if and only if T),(A) is a
non-zero directly finite object in ¢/«),. For non-zero purely infinite objects the
definition of u,, now takes the following easy form:

1.5. Proposition. Let A be an object of ¢ and suppose that Ty,(A) is a non-zero
purely infinite object of ¢/s/y;. Then uy(A) is the cardinal characterized by ihe
Jollowing property: for every non-zero cardinal a, uy(A)>a if and only if the
objects A and aA of ¢ are isomorphic in €/y,.

(Recall that if A4 is an object of ¢, aA is the direct sum of a copies of A [7].)

Proof. If A4 and aA are isomorphic in ¢/, there exists ee B[¢]\ M such that
aey (A)=e (A)<A, so that uy(A)>a. Conversely if a is a non-zero cardinal and
a is infinite the conclusion follows from [6, Prop. 12.9]; if & is finite A=aA in
%/./\s because Ty,(A) is purely infinite. Therefore u,,(A) has the property stated in
the proposition. Moreover there cannot exist two cardinals with this property. [J

1.6. Corollary. Let ¢ be a spectral category, let o be a cardinal number, and let
A be an object of ¢. Then the set {Me B[¢] iuM(A)>a} is an open set in X[¢].

Proof. Proposition 7.5 and Corollary 4.4. [

Let us consider the class of all mappings f: ¥[¢]— Card, where Card denotes the
class of all cardinal numbers. The image of f is a set of cardinals, and therefore
for every f:X[#]—Card there is a cardinal & such that f(M)<¢ for all MeX[%].
Thus f may be viewed as a function of X[%] into the interval [0,&[ of all the
cardinals less than ¢ and we shall say that f:X¥[¢]—Card is continuous if
Sf:X[¢]1—1[0,&[ is continuous when [0, &[ has the topology whose open sets are the
set [0, ¢[ and the sets ]a, £[, where o ranges in {0, £]. By Corollary 7.6 the mappings
X[#]—Card defined by M~ u,,(A) are continuous for every object A of ¢. In this
way by [7, Cor. 13.11] it is possible to embed the class of all the isomorphism classes
of the purely infinite objects of ¢ into the class of all continuous functions of ¥[¢ ]
into Card. Note that if f and g are continuous functions of ¥[¢] into Card, then
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there is a partition of X[#] in two clopen sets such that f=g on one of these sets
and g=f on the other set. It follows that if we fix a point M € X[#] the class of all
germs at M of continuous functions of ¥[¢7] into Card is totally ordered. And it is
clear that .7,{ ¢/} embeds as a totally ordered class into the class of all gerins
at M of continuous functions of X[#] into Card.

8. Grothendieck groups of dense subcategories of spectral categories

We want to apply our results to the study of the Grothendieck groups of dense
subcategories of a spectral category.

Let » be a spectral category and let (X[¢ ), ) be the associated spactral variety
of categories. Let .» be a dense subcategory of # and suppose that the isomorphism
classes of the elements of .» form a set. Under this hypothesis we can construct the
Grothendieck group Ky(.7) of .7, i.e. the abelian group with one generator [A4] for
cach Ae.» and with relations [A]+[B]-[C]=0 for all A,B,Ce.¥ such that
A®B=C.

H Ty : ¢ — /4y is the canonical functor, we may consider the image .7, of ¥
with respect to Ty,. Clearly .7, is a dense subcategory of ¢/, and it is possible
to construct its Grothendieck group Ky(.75,). Hence for every M € X[%] we have an
abelian group Ki(.7y). Let .¥y(.7) be the disjoint union of the sets Ky(.%a),
MeX|[/]. For every A,Be .7, ue B[], consider the subset of .#,(.7)

[4, B,u] = {[Ty(A)i ~ [Ty(B)] [Me X[+ ], ue M}.

Note that if M e X[ |, then Ty, (A), Ty(B) € 75y so that [Ty, (A)]-- [Ta(B)] € Ko 7rg).
Itis not difficult to verify that the sets [4, B, u], when A, B range in .» and u ranges
in B[~ ], are a basis of open sets for a topology on .¥,(.7 ) and that .¥,(.#) with this
topology is a sheaf of abeliai: groups over ¥[# ].

Consider the group homomorphism i: Ky(.s)—=>T(¥[7],.%o(.#)) defined by
I([AM) ={Ty,(A)] for all Ae.~.

8.1. Theorem. The mapping i is a group isomorphism.

Proof. The group Ky(.» ) has a canonical structure of B[# ]-module: if A€ .7 and
ee€ Bl ], then e4(A) is a submodule of 4 and therefore it is in .7 and we may
define e[A] = [e 4(A4)]. The functor Ty,: 7 =% /)y induces a surjective group mor-
phism K,(7)—Ky(/y) and it is not difficult to verify that the kernel of this
morphism is MKy(.7 ). Thus Ko(.7y) = Ko(.7 )/ MKy(.7).

It is now easy to check that .#y(.#) is the sheaf of abelian groups over ¥[¢]
associated to the B[« ]-module Ky(.7) (see Pierce [11, p. 18]). Now i is an iso-
morphism by [11, Theorem 4.5].
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By Theorem 8.1, the study of K,(.¥), when ¥ is a dense subcategory of a spec-
tral category, is essentially a ‘local’ problem: Ky(¥) is the group of global sections
of a sheaf of abelian groups whose stalks are the groups Ky(¥y), Me X[#]. Let us
study the groups Ky(%y)-

8.2. Lemma. Let ¥ be a dense subcategory of a spectral category ¢ and let
MeX[¢). If %\ contains a purely infinite object of €/st/\;, then Ky(%y)=0.
Otherwise Ky(%y) is a convex subgroup of the totally ordered abelian group whose
psitive cone is {6/}

Proof. If A is a purely infinite object of ¢/, then for any directly finite object
Bof %y A®B=A, so that [B} =0 in K(¥y); and for any purely infinite object C
of %y C=C@C, so that [C]=0 in Ky(%y). Thus if %), contains a purely infinite
object of €/o/py, Ko(Sn)=0.

On the other hand if every object of %y, is a directly finite object of ¢/, the
canceliation property holds in .#), and therefore Ky(.#)s) is a convex subgroup of
the totally ordered abelian group whose positive cone is ./ {%/o),}. [

In particular if ¢ is a spectral category, let # be the full subcategory of ¢
generated by all the directly finite objects of #. Then .7 is a dense subcategory of
#, so that Ky(.#) is the group of global sections of the sheaf ¥,(.7 } over ¥[#}. The
stalks of .¥,(.#) are the totally ordered abelian groups Ky(.#ys); moreover Ky(#ys)
is canonically isomorphic to the totally ordered abelian group whose positive cone
is {4/ op}.

Now suppose that .%, #” are two dense subcategories of a spectral category ¢. If
7' ¢ .7, the inclusion ¥ —.%” induces a morphism of sheaves of abelian groups
Ho( )= Hp(¥). In particular, if & is a dense category, its subcategory ¥ N . is a
dense subcategory, so that the inclusion N % —.% induces a sheaf morphism
Ho(¥' N F)= 4y(¥). By Lemma 8.2 this sheaf morphism is surjective and its kernel
is the restriction (4N # iy of the sheaf xy(# N .#) to the open subset U of
¥[#], where U denotes the set of all M e ¥[#] such that ¥ contains a purely infinite
object A with T,,(A) non-zero in ¢/, [5, 11.2.9]. Furthermore the inclusion
4N #— ¥ induces a sheaf morphism ¥,(.¥ N #)— ¥p(F#). This sheaf morphism is
clearly injective. Note that J#o(¥N.F)y=x(F)y. We have thus proved the
following proposition.

8.3. Proposition. Let .7 be a dense subcategory of a spectral category %, let U be
the open set consisting of all M € X[¢] such that & contains a purely infinite object
A with Ty (A) non-zero in %/ and let # be the dense subcategory of ¢ con-
sisting of all directly finite objects of €. Then Xo(F )y C Ho(F N.7)C Hp(F) and
H( Az AH(FOSY H(F)y. I

In particular N(X[¢], X(F)) <= K(F N F)<Ky(F) and Ko(7)=K(F N5/
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T(X[%}, ¥o(#)y). By [5, Th. 11.2.9.3] ¥,(s) is isomorphic to a subsheaf of
¥o(-# )y v~ Also note that Ko(.7)=T1 (X[#), ¥o(¥)) is a lattice ordered group.

9. Examples

9.1. Example. Discrete categories. It is well known that every discrete spectral
category is equivalent to a category % =[], ,Mod-K;, where the K;’s are division
rings and 7 is the spectrum of ¢ (see Section 3 and [4]). In this case X[¥] is
homeomorphic to 8(/), the Stone—Cech compactification of I with the discrete
topology (Lemma 3.1). Recall that #(/), as a set, may be viewed as the set of all
ultrafilters over I. Clearly Ko(.7)=2Z'=7Z%). If % € B(I), i.e. % is an ultrafilter
on I, then the stalk Ko(.#,) of ¥o(#) at # is the ultrapower Z'/ #. Note that if #
is a free ultrafilter, Z'/ # is not Archimedean, so that the category ¢/« ,, which
is an indecomposable abelian category in which every exact sequence splits, is not
a spectral category. In fact it easily follows from [7] that the groups K,(#) of the
indecomposable spectral categories are Archimedean groups.

9.2. Example. Continuous categories. A spectral category is continuous if and
only if Ky(.# ) has no atoins (as a partially ordered set), i.e. if and only if for every
isolated point M of X[7 ]. Ky(.#4) is not isomorphic to Z. In particular X[Dis(# )}
is the closure of the set cof all the isolated points M of X[%] with Ky(#y,)=Z.

9.3. Example. Spectral categories of type 1, 11, and 111. Recall that any spectral
category is the direct product of three categories of type I, II and III respec-
tively [14].

Since a spe:tral category is of type III if and only if it has no directly finite
objects, it is clear that a spectral category % is of type 11l if and only if #,(#)=0.

By [7, Theorem 10.8] and by Theorem 7.5 a spectral category is of type II if and
only if the stalks of .x,(.#) are continuous groups (a totally ordered abelian group
G is coniinuous if v(G)2 R for every real valuation v of G). Similarly, a spectral
category is of type | ii and only if the set of all positive elements of K,(.#y,) has a
minimum for every stalk Ky(.7ys) of ¥p(F).

It is possible to give a better description of the monoid .#,{¢/«)} when ¢ is a
spectral category of type [ or II. (When # is of type III .4;{%/.«/),} =0.) Denote by
P the monoid of all non-negative integers if ¢ is of type I or the monoid of all non-
negative reals if 7 is of type II. Let P have the topology induced by the topology
of the real numbers and let P*=PU {0} be the compactification of P with one
point. For every open neighborhood U of M in X[¢] let P}, be the monoid of all
the continuous functions f: U — P* such that the open set f~!(P) is dense in U and
with the sum .n P{ defined by components. If U, ¢ U, there is a canonical mor-
phism P{, =P given by the restriction. Then #,{#¢/ )} is isomorphic to the
direct limit lim P, where U ranges in the filter of all the open neighborhoods of M.
This follows from [7, Theorem: 14.2].
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